/30—3146 e3e

UNCLHSSIFIED

ANALYSIS AND DESIGN METHODOLOGY FOR YLSI COMPUTING 172 .
NETWORKS(U) INTEGRATED SYSTEMS INC PALO ALTO CA
H LEV-ARI AUG 84 ISI-46 N0@O14-83-C-8377
F/G 9/2

M g28 m25 .
|||||=_—_ E z %

o [K13 L

5 M 123

=
iz it ns

=5
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

3

]
Ve
VL
[
X

L
;.

o
- L

. i rated
: %um. |
| AD-A146 030
:]
L ANALYSIS AND DESIGN METHODOLOGY FOR - -
VLS!I COMPUTING NETWORKS *
;- FINAL REPORT - h‘
]
HANOCH LEV-ARI o
PREPARED FOR: ..;.,_4
OFFICE OF NAVAL RESEARCH]
8C0 NORTH QUINCY STREET o ;
ARLINGTON, VIRGINIA 22217 ‘
.

ATTENTION: DR. DAVID W. MIZELL

R
SRS

o
PREPARED UNDER: DTIC o
CONTRACT NO. NO0O014-83-C-0377 ELECTE] .
SEP2 6 1984 !

1
{1 DISTRIBUTION STATEMENT R | B . - —1‘
Approved for public release 3 AR
Distribution Unlimited y '

ISI REPORT 46 ® AUGUST 1984

ONe FILE copy

101 University Avenue Paio Aito. CA 94301-1695 Telephone 415/853-8400

BA 09 05 014 .-

T Ay

TABLE OF CONTENTS

Section Title Page
1 mmoDUanN * . L] [] L] £] []) L) . L] . [] L] L] L] . . L] - L] -
2 MODELING PARALLEL ALGORITHMS AND ARCHITECTURES

2.1 Toward a Formal Definition of Algorithms
and Architectures . . . +. ¢ ¢ ¢ ¢ o o o o ¢ o o & o
2.2 Modular Computing Networks « ¢ ¢ o o o o o
2.3 Causality and Executions . . . ¢« ¢« ¢« ¢« ¢« « « . « . 16
2.4 Hierarchical Composition of MONs ., 19
2.5 Comparison of M(Ns with Other Network Models . . . 23
2.5.1 Block-Diagrams and Finite—State Machines . . 23
2.5.2 Data-Flow-Graphs and Petri-Nets 25
2.5.3 High~Level Programming Languages 27
2.5.4 SUBMBMATY s e s s s o e+ s o e o s+ . 28
2.6 Formal Language Representation of M(Ns 28
2.7 SUMBATY s s o s s s s = o s s s e e e s s o 32
3 STRUCTURAL ANALYSIS OF MCNs . . . « ¢ « « ¢ ¢« o « o o «» 35
3.1 Numbering of Variables and Processors 35
3.2 Dimensionality and Order ¢« ¢« « ¢« &+ « « «» . 36
3.3 Schedules, Delay and Throughput » . 40
3.4 Space-Time Diagrams ., . . . ¢ ¢ &« ¢« o« ¢ s s « « » + 47

3.5 SUMBALY 4 0 s s e s s s e e e o0 .. 56 !ﬁ.__}
4 ITERATIVE AND COMPLETELY REGULAR NEIWORKS 57
4.1 Iterative M(Ns and Hardware Architectures 57 L
4.2 Completely Regular MINs . . . « + « + = s o o &« « o 67 :
4.2.1 Space-Time Representations in Z3 e » o o« 68 —
4.2.2 Spatial Projection of M(Ns in Z3 e e o o s 10
4.3 Modular Decomposition of MCN Models 72 N
4.3.1 Modular Decomposition of Linmear "-‘
Multivariable Filters o 13 e

5 CLASSIFICATION OF ARCHITECTURES ., .
5.1 Topological Equivalence
5.2 Architectural Equivalence . . .

5.3 Periodicity Analysis and Throughput

5.4 Boundary Analysis

§.5 Summaxry

6 CLASSIFICATION OF SPACE~-TIME REPRESENTATIONS
6.1 The Fundamental Space-Time Configurations

6.2 Architectures with Local Memory

6.3 Boundary Analysis . . . ¢« ¢ ¢ ¢ ¢ ¢« s o o
6.3.1 The Configurations IM1, 12, R2

6.3.2 The Configurations RM2, R3, H3a, H3D

6.3.3 The Configurations HM3a, R4 . ., . .
6 .3 .4 s“n.ry L) . L] L] L] . L] . e L] L] L] . *

6.4 Interleaving Architectures by Local Memory

6-5 s“ﬂ.ry ® ® @ e o s ° e o o e 0o o s e o .

7 CONCLUSIONS . . . + . ¢ ¢ ¢ o o o &
8 TECHNICAL PUBLICATIONS
BREFERENCES ¢ 4 v ¢ ¢ s o o o o o o o o
APPENDIX A: PROOF OF THEOREM 2.2 FOR INFINITE

MCNs

.

APPENDIX B: ADMISSIBLE ARCHITECTURES « . « « &
APPENDIX C: PROOF OF THEOREM 2.3, MINIMAL EXECUTIONS OF
FINIm ucN' e L] L4 L] - L] L] * . L] L4 . » * L .

APPENDIX D: ELEMENTARY BEQUIVALENCE TRANSFORMATIONS

APPENDIX E: ANALYSIS OF MATRIX MULTIPLIERS

APPENDIX F: EQUIVALENCE VIA LINEAR TRANSFORMATIONS

e —————
w Pssion For

——
s mii‘\ﬂ"*‘
“‘C T4R

M"h"lJ.""‘(‘d

uat¢‘1;9t19q

Lx«tr‘*utton/
.
] quilubtllty Codes

lAVail and/or
Spuecial

gt

19
81
85
85
88
92
95
95
96
101
101
104
105
105
105
107
109
111
113
117
119

121
127
129
141

N 8

" la?

@

ety
ORI

.o

e

'-u

.

. ey - e m - P T ——— STy ——

SECTION 1
INTRODUCT 10

* Several methods for modeling and analysis of parallel algorithms and
architectures have been proposed in the recent years. These include
recursion—type methods, like recursion equations, z-transform descriptions
lndn'do-loopsf/in high-level programming languages, and precedence-graph—
type methods like data—-flow graphs (marked graphs) and related Petri—net
derived nodel;'lll, [2). Most efforts have been recently directed towards
developing methodologies for structured parallel algorithms and
architectures and, in pltticéiar, for systolic—srray-like systemsﬁ[3]-[10].
Some important properties of parallel algorithms have been identified in the
process of this research effort. These include executadbility (the absence
of deadlocks) pipelinability, regularity of structure, locality of
interconnections, and dimensionality. The research has also demonstrated
the feasibility of multirate systolic arrays with different rates of data
propagation along different directions in the array.

- Ir this final report we present a new nethodolgey}for modeling and
analysis of parallel algorithms and architectures. Our methodology provides
a unified conceptual framework, which -we 6til modular computing network,
that clearly displays the key properties of parallel systems. In

particular,

(1) Executability of algorithms is easily verified.

(2) Schedules of execution are easily determined. This allows for
simple evaluation of throughput rates and execution delays.

(3) Both synchronous and asynchronous (self-timed) modes of execution '7
can be handled with the same techmiques. .
(4) Algorithms are directly mappable into architectures. No elaborate :':.;
hardware compilation is required. S
(5) The description of a parallel algorithm is independent of its !~:~ﬁ
implementation. All possible choices of hardware implementation '
are evident from the description of a givenm algorithm. The s
R
s
1
] »

equivalence of existing implementations can be readily
demonstrated.

(6) Both regular and irregular algorithms can be modeled. Models of
regular algorithms are significantly simpler to analyze, since
they inherit the regularity of the underlying problem.

Our methodology is largely based upon the theory of directed graphs and can,
therefore, be expressed both informally, in pictorial fashion, and formally,
in the language of precedence relations and composition of functions. This
duality will, hopefully, help to bridge the gap between the two schools of
research in this field. An outline of a formal language represeantation for
modular computing networks is also provided.

The multiplicity of possible hardware implementations for a given
computational scheme is efficiently displayed by a space—time
representation, a notational tool that has been incorporated into some
recent methodologies for modeling, analysis and design of parallel
architectures [23-31]. Coordinate transformations of a given space-time
representation produce distinct hardware configurations which are equivalent
in the sense of being the implementations of the same computational scheme.
The problem of mapping a given algorithm into a desired hardware
configuration can, therefore, be partly reduced to choosing the appropriate
coordinate transformation in space-time. In particular, uniform recurrence
relations, whick correspond to systolic—-array architectures, are described
by regular space-time representations, This implies that only linmear
coordinate transformations are required, and that the entire computational
scheme can be described by a small collection of vectors in space-time, the
dependence vectors [25,27,28,30]. Comnsequently, the selection of a desired
hardware architecture for a given algorithm reduces to the determination of
an sppropriate nonsingular matrix with integer entries.

A simple technique for transforming a given 3-dimensional space-time
representation into an equivalent canonical form is presented in Sections 5-
6. A catalogue of canonical forms is comstructed, showing a total of 34
distinct systolic architectures. The task of selecting an appropriate
transformation for a given space-time representation reduces, therefore, to
the determination of the equivalent canonical form. The important result,
which has been overlooked in previous research, is that the camomical

equivalent of any given space-time representation is unjgue. This means

o T Ty o e g P —— Y —— -~ -
. - - - ~- - - - B . . - - N I . -) - 2] - K
e e N T N Ry Me e e e e e T e e e s e G SR T T S L T R e L. DR At R

oo

o

5 : that once s space—time representation has boen specified there is no
In flexibility left in the process of mapping it into systolic-array

architectures.
- A smal]l fraction of space-time representation does allow some
35 flexibility in selecting the hardware architecture, but omnly at the cost of
inefficient implementation. The well-known example of matrix
multiplication, which has four distinct realizations (see [4,5,7,10]) turns
out to be one of the few cases where such flexibility is available. A
closer examination of the structure of the matrices to be multiplied reveals
that each realization is efficient under a different set of structural
assumptions (see Section 6.3). Thus, in summary, carefully specified
algorithms lead to unigue space-time representations which, in turn, lead to

essentially unique architectures.

SECTION 2
MODELING PARALLEL ALGORITHMS AND ARCHITECTURES

The concepts of 'algorithm’ and 'architecture,’ which have been widely
used for several decades, still seem to defy a formal definition. Books on
) computation and algorithms either take these concepts for granmted or provide
=' a sketchy definition using such broad terms as ’'precise prescription,’
‘computing agent,’ ’'well-understood instructions,’ ‘finite effort’ and so
forth., The purpose of this section is to provide a simple formal model for
- modeling and analysis of (parallel) algorithms and architectures. This
.: r model, which we call modular computing network (MCN) exhibits all the
i properties usually attributed both to algorithms and to hardware
architectures. As a first step toward the formal introduction of this model
we extract in Section 2.1 the main attridbutes of algorithms from their
a . characterizations in the literature. This analysis of literature leads to
- the conclusion that algorithms can only be defined in a hierarchical manner,
i.e., as well-formed compositions of simpler algorithms, and that the
simplest (non-decomposable algorithms) cannot and need not be defined., The
il |_ building blocks of the theory of algorithms are characterized in terms of
o three attributes: Function (what building blocks do), execution time (how
long they do it), and complexity (what does it cost to use them). These

observations are incorporated into the modular computing network model, as

> - described in Sections 2.2 - 2.6.
2.1 TOWARD A FORMAL DEFINITION OF ALGORITHMS AND ARCHITECTURES
)y
In this section we attempt to extract the main attridbutes of algorithms a
and architectures from a randomly chosen sample of 'definitions.’ Nost :'
o characterizations of algorithms are geared to the notion of sequential '1‘
. execution., Nevertheless, we shall see thst this underlying assumption is .
:;
,‘1
]
» . > .
-

S A I TP

almost never made explicit. As a result, the attributes of parallel
algorithms are, in fact, included in the available characterizations.

As a typical example comsider the following definition. ‘'The term
'algorithm’ in mathematics is taken to mean a computational process, carried
out according to a precise prescription and leading from given objects,
which may be permitted to vary, to a sought-for result’ [11]. This
definition simply states that an algorithm is a well-defined input-output
map and that its domain contains at least one element, and usually more than
one, However, the term ‘computational process’ hints that an algorithm is
more than just a well-defined function. Indeed, 'A functiom is simply a
relationship between the members of one set and those of another. An
algorithm, on the other hand, is s procedure for evaluating a function’
[12).

But how are functions evaluated? We are told that ‘this evaluation is
to be carried out by some sort of computing agent, which may be human,
mechanical, electronic, or whatever’ [12), Thus, the emphasis is on
physical realizability (the existence of a 'computing agent’) but not on the
sctual details of the realization. The first axiom of the theory of
algorithms is, therefore:

There exist basic functions that are physically realizable.

Further efforts to define physical realizability turn out to be quite
futile. This is recognized by Aho, Hopcroft and Ullman who say, ‘each
instruction of an algorithm must have a ’clear meaning’ and must be
executable with a ’'finite amount of effort.’ Now what is clear to ome
person may not be clear to amother, and it is often difficult to prove
rigorously that an instruction cam be carried out in a finite amount of
time’ [13]. Physical realizability is a matter of technology: What is mon-
realizable today may become realizable in a year or two. The theory of
algorithms has to assume the existence of realizable basic imput-output maps
but need not be concerned with the details of their implementation.
Therefore, the core of any theory of algorithms is a mon-empty collection of
padefiped objects, which we shall call processors. These are the ‘computing
sgents’ mentioned above, and they are assumed to have three attributes:

(1) Function (an input-output map)

(i1) Complexity measure

(iii1) Execution time

A processor is assumed to be capable of evaluating the input-output mep in
the specified execution time. The cost of utilizing the processor is
specified by its complexity measure. Notice that the notion of 'effort’
mentioned above is a combination of the processor's complexity and its
execution time.

It is important to draw a distinction between an algorithm and its
description. An algorithm consists of processors (oxr basic functionms),
corresponding to all the functions that meed to be evaluated. For instance,
the computation of sin x via the first 100 terms of its MacLaurin series
requires 100 basic functions, one for each term of the truncated series.

The description of the same algorithm in terms of instructions requires onmly
one instruction, which will be repeated 100 times with varying coefficients.
Since descriptions of algorithms need to be commumicated, stored and
implemented, they must be finite, i.e., contain a finite number of
instructions. The algorithm itself, on the other hand, may consist of an
infinite number of processors, and used to process an infinite number of
inputs into an infinite number of outputs. Such are, for instance, most
signal processing algorithms: Their inputs and outputs are time-series
which may, in principle, be infinitely long. The executability of these
algorithms depends upon their capability to compute any specific output with
finite time and effort, and to use only a finite number of inputs for this
purpose. This observation also sheds a new light on the concept of
‘termination,’' which is uvsuvally overemphasized in definitions of algorithms.

The basic functions comprising an algorithm are interdependent in the
sense that the outputs of ome processor may serve as inputs to other
processors. A complete characterization of an algorithm requires,
therefore, to specify both its basic operations and the intercommection
between these operations. The same statement applies, of course, to block-
diagram representations of hardware, to flow-graphs and, in fact, to any

netwvork-type schemstic. Vhile algorithms are commonly described in some

" P, A P PPN S Y WY VG WY P G W WU WG PV P ST O S Sy S SRS

~ .
i

=
o
-
- ——y
-
J._J
1

I T AER

————

formal language, they can also be described in a schematic manner.
Conversely, schematic hardware descriptions can be transformed into formal
language representations., To emphasize this equivalence we shall introduce
the concept of s modular computing network (MCN), which exhibits the common
attridbutes of both algorithms and architectures. Thus, an MCN is a pair

M= {iin (.(”

where .#, the function of the network, is essentially the collectiom of
basic functions discussed above, and &%, the architecture of the metwork,
is a directed graph describing the interconnmections between basic functions.
A detailed definition is provided in Sectiom 2.1,

The concept of modular computing network is hierarchical b~ ~ature.
Basic functions can be themselves characterized as networks ¢ .,ven more
basic functions. This requires every MCN to have the three damental
attributes of a basic function: Input-—output map, complexit o execution
time. VWe shall show in the sequel how to uniquely associate such attributes
with modular computing networks, The theory of MCNs is, in short, the
theory of network composition (deducing the properties of a metwork from its
components) and network decomposition (characterizing the components and

structure of a network whose composite properties have been specified).

2.2 MODULAR COMPUTING NETWORKS

A modular computing metwork (MCN) is a system of intercommected
modules, The structural information about the metwork is comveyed by
specifying the intercommections between the modules, most convenieantly in
the form of a directed graph (Figure 2-1)., The functional information about
the metwork is conveyed by characterizing the information transferred
betweer modules and the processing of this information as it passes through
the modules.

The structurs]l attributes of an MCN are completely specified by its
archjtecture, which is an ordered quadruple

Architecture = {S, T, A, P} (2.2)

e natlenl

aeaad

Figure 2-1.

The Directed Graph Associated with 2 Modular Computing Network

~—

i

S

where S,T asre sets whose c¢clements are called sougrces and sjinks,
respectively, and A,P aze relations between these sets,

The ancestry relation A specifies the connections of sources to

sinks., The elements of A, which are called arcs, are ordered source-sink

pairs
aeA == a=(s,t), s &8, teT (2.3)

An arc represents a direct transfer of information from source to sink. Two

basic assumptions govern this transfer:

(1) There are no dangling sources. Every source is conmected to
exactly one sink.

(2) There are no dangling sinks. Every sink is conmected to exactly
one source.

These assumptions mean that the three sets §$,T,A have an equal number of
elements, and that the ancestry relation A establishes a one—to-one

correspondence between arcs, sources and sinks, viz.,

1is) (2.4)

(s,t) e A <==> s =A(t) (== t=A
This ome-to~one correspondence will permit us to identify im the sequel each
arc with its associated source and sink, and to eliminate almost all sinks
and sources from the description of network architectures.
The processing relation P specifies the processing of informationm
sxtracted from sinks into transformed information, which is re—injected into
sources. The elements of P, which are called processors, are ordered

paizs of non—-empty finite sink-source sequences, viz.,
P 8 P ==> p = [tl.tz’.--'t‘; .lo.zl.onl‘n) (2'5)

t, s T, s, ¢ S, 1{m, n(e=

10

Lok

.

The input set (tl. tz. cess t') consists of all the sinks from which the
processor p extracts information., The transformed information is
distributed among the members of the output set (31. Sy eee sn). The
one—to—one correspondence octween sources, sinks and arcs allows uvs to
describe processor inputs and outputs in terms of arcs and to almost
completely eliminate the notion of sources and sinks., The set of input arcs
of a processor p is denoted by A’(p). and the set of output arcs from
the same processor is denoted by Ao(p). Each processor is assumed to have

unique inputs and outputs, namely

A) N A =0

Similarly, every collection of processors, Q (C P, has its uniquely

defined inputs and outputs, viz.,

Aj(Q := U Ag(p) = U A (p) (2.7s)
peQ peQ
and
Ao(Q) = Ao(p) - J Ai(p) (2.7b)
peQ peQ

In other words, the inputs of Q are those inputs of processors in Q that
are not connected to outputs of processors in Q. A similar statement holds
for outputs of Q. Im particular, Ai(P)' Ao(P) are the inputs and
outputs of the entire metwork,

Network architectures are most conveniently described by a directed
graph that combines together the ancestry relation A and the processing
relation P into a single block-diagram-like representation (Figure 2-2a).
Sources and sinks are denoted by semi-circles, processors by circles and
arcs are, obviously, denoted by arcs. Sources and sinks are paired, and
each processor has its inputs and outputs adjacent to itself. An obvious
reduction in notation (Figure 2-2b) enhances the comprehensibility of the
description. The reduced form is, essentially, a block-diagram
representation of the metwork architecture, and can be interpreted as a
dizected graph &

11

SRR AP v MR e T e e Bt st chsy abmt aete et Shentds s Soeu e g o g L g S e '7,__rq

| ST SO SN SRTUTURT

L}
a

L e alala

L P
P SO PR

r

.y
<A

e

a. Fuoll Form Description

Figure 2-2,

b. Reduced Form Description

Bquivalent Full Form and Reduced Form Descriptions of
Network Architectures

12

18

ol

=

'
i
.

o = (V, A) (2.8a)

The set of vertices V of this graph is
ve={ Ai(P)' P, AO(P) } (2.8b)

where Ai(P) are interpreted as the sources corresponding to the imput arcs
and AO(P) are interpreted as the sinks corresponding to the output arcs,
The arcs of the directed graph coincide with the originsl set of arcs A,
The interpretation of network architectures as directed graphs puts at our
disposal the powerful tools and results of graph theory. Some of these will
be used in the seqvel to characterize and anslyze the structure of modulsr
computing networks.

The functional attributes of an MCN are completely determined by its

architecture and by specifying the functional attributes of each processor.

Thus, the function of a network is an ordered pair
¥ = (X, F) (2.9)

where X, F are sets whose elements are called yvariables and meps,
respectively.

The elements of X are sets (i.e., domains) and ’assigning a value to
a varisble’ amounts to choosing a particular element in the domain
corresponding to that variable. There is ome variable, t I associasted
with every arc a ¢ A of the corresponding architecture. Conseguently,
there is a one-to—one correspondence between variables, sources, sinks and
arcs. This correspondence makes it possible to refer to the variables
associated with the inputs of a given processor p as the imput variables
of p and denote them by xi(p). A similar notation, Xo(p). is used for
the variables associated with the outputs of the processor p.

The elements of F are multivariable maps. There is one map, fp.
associated with overy processor p s P of the corresponding architecture,
It maps the imput variables of tﬁis processor into the corresponding output

variadles, viz.,

13

IP : l‘(p) -=> Xo(p) (2,10)

which mesns that each of the output varijables is a function of the input
varisbles (not necessarily of all the input varisbles). This establishes a
precedence relation between the inputs and outputs of a given processor,

viz.,
T ->y (2.11)

if x ¢ A‘(p). ye Ao(p) and if y 1is a function of x (and, possibly,
of other input variables). The transitive closure of this relation is also
8 precedence (i.e., s partial order): We shall say that x, precedes .
if there exists a sequence of variables such that

’1 ") :2-). oo-)xn
in the sense of (2.11). This global precedence will also be denoted by
x4 -> x_ . The sncestry (14] of a variable x ¢ X is the set of all

variables that precede x, vi:.,
a(x) := (z; z ¢ X, z =) x} (2.12)
These are all the variables that have to be known in order to determine the

value of x.
Since the function of a network consisting of a single processor p is

Q'P = (X,(p) V), X, (p), fp]

thesre is, essentially, no distinction between the functiop and the mpap of
p. Thus, the input-output map of a single processor may also be called the

1

la!

. a! Y

function of the processor. The same is not true for a metwork consisting of .
several processors: The imput-output map of a metwork is a single .
multiverisble map, relating the outputs of the metwork to its finputs; the }
-9
L
”]
14 {

e _
1
e — - - — —a—d ; ——a .

function of the network, in contradistinction, is the collection of the
atomic maps that comprise the network, The anslysis problem for
computational networks is to determine the network map from its function.
The synthesis problem is to design an MCN (i.e., specify its structure and
function) that realizes a given multivariable input-output map.

Modular computing networks need nmot be finite. In fact, most signal
processing algorithms correspond to infinite MCNs., However, the concept of
finite effort, involved in the evaluation of variables, imposes certain

constrajints upon infinite metworks, First, the number of inputs and outputs

of every processor must be finite., This means that the graph & describing
the architecture is Jocally finite [15). Next, every variable must be
computable with finite effort, so it will be required to have s finite

ancestry, viz.,

la(x)] ¢ » for all x ¢ X (2.13)

We shall also assume that the number of connected components of the
architecture g is countable. A modular computing network that satisfies
the three assumptions stated above——local finitenmess, finite ancestry and
countable number of comnected components—will be called structurally
finite. The following result characterizes the kind of infinity allowed in

such metworks.

eorem

A structurally finite NCN has a countable number of variables and

processors. The following three statements are equivalent:

{1) The number of variables is finite.
(2) The number of output variadbles is finite. i~

(3) The number of processors is finite. i':g

15 h

R e - i i a s e D B e e n A ‘L..J

The countability of the variables and processors of a connected network
is a direct consequence of local finiteness (see, o.g., [15)). Since each
connected component has a countable number of variables and processors, the
same is obviously true for a countable number of connected components. Thus
the number of variables and processors of a structurally finite MCN must be
countable. As a consequence of local finiteness, a finite number of
processors implies a finite number of variables and vice versa, so (1) and
(3) are equivalent, Clearly (1) implies (2), while (2), via the finite
ancestry condition, implies (1),

B

2.3 CAUSALITY AND EXECUTIONS

The definition of processors in the previous section did not take into
account any constraints imposed by hardware implementation comsiderations.
the most important among these constraints is the causality property. It
will be henceforth assumed that an output of a processor cannot become
available before the inputs of the same processor that precede this output
became available. In the beginning all variables are unavailable; the
inputs of the network are made available at a given instant, and following
that event, all variables of the network gradually become available. This
temporally ordered process, which we shall call execution, must be
consistent with the precedence relstion between varisbles induced by the
directed nature of the architecture . A network that possesses an
execution in which every variable ultimately becomes available is said to be
executable (or ’'live’ in the terminology of Petri-nets [1]. 1t is clear
that s network containing a cycle cannot be executable since every variadle
(= arc) on the cycle can never become available. In order to satisfy the
causality assumption every variable in the cycle must temporally precede
itself (i.e., it must be available before it becomes available (Fig. 2-3)),
which is, clearly, impossible. It turms out that every acyclic architecture
is executable. To prove this result we shall npeed to formalize the notion

of execution.

16

Figure 2-3.

An execution of an MCN is a partitioning of its variables into a
sequence of finite disjoint sets, viz.,

E={8;0¢1i<e", Isi|<-. sir\sj-ct» for i¢ 3, US, =X)

(2.142)
such that the precedence relation is preserved, viz.,
i-1
a(s)C U s i=0,1, ... (2.14b)
3 §=0]

Here a(S) denotes the ancestry of the set S, defined as the collection

of all ancestors of members of S, viz.,

a(8) :=) a(x) (2.15)
xS

In simple words, every asncestor 6f | S s‘ must be contained in ome of the
sets S,, S,, ..., 8; ;, which we shall call levels. Exocutions can be
interpreted as multistep procedures for evaluating all the variables in X.
The membors of the level 8‘ are ovaluated at the i-th step, and the

17

1

1
®-—
o

MRS RS TET T T

.Y . N

condition (2.14b) guarsntecs the availability of all their ancestors at the
right moment. Since the ancestors of the level Si strictly precede S‘
all variables in this set can be evaluated simultancously giving rise to a
paralle]l execution. If each set Si contains exactly one variable the

execution will be called sequential,

Since each level Si in an execution is finite, the evaluation of the
variables in Si from the members of the preceding levels requires finite
effort. Since each variable belongs to some level Si. the total effort
involved in the evaluation of a single variable from the global inputs is
also finite, Thus, the existence of an execution for a given MCN implies
that every variable can be evasluated with finite time and hardware., A
network that has an execution deserves, therefore, to be called executable.

The preceding discussion implies that executability is a structural
property, since only the precedence relation between variables is involved
in constructing executions. The following result presents a simple

structural test for executability of M(Ns.

I_i;oggu 2 ‘z

A structurally finite MCN is executable if, and only if, its

architecture is acyclic.

Proof:

If an execution exists, them it can be easily converted into a
sequential execution by ordering the variables in each (finite) level si
in some arbitrary manner, Thus, executability is equivalent to the
existence of a geguential execution., By a well-known result in the theory

of finite directed graphs, a sequentisl ordering exists if, and only if, the

grapk is acyclic. Thus, the theorem holds for finite NCNs. The proof for
infinite metworks is given in Appeadix A.

18

ks

..

T— p~.\m‘ - - " gt a0 e o e o————e -

Executable MCNs slways have sequential executions.

The corollary confirms the intuitive notion of executability: Any
computation that can be carried out in parallel camn also be carried out
sequentially. Parallel execution offers, bowever, an attractive trade-off
between hardware and time, which will be discussed in detail in Sec. 3.4.
Theorem 2.2 provides a simple test for executabdbility and, in effect,
prevents the construction of non—executable MCNs. Thus, the pitfalls of
starvation and deadlocks, well known in the context of Petri-mets [1] are
easy to avoid. Notice also that since each variable in an MCN is evaluated
exactly once, safemess [1] is guaranteed. This means that inputs to
processors do not disappear before they have been used to evaluate the
subsequent outputs., Safeness is achieved because once s variable becomes

available it stays so forever, and never disappears.

2.4 HIERARCHICAL COMPOSITiICN OF MCNs

Modular computing metworks are, by definition, comstructed in a
hierarchical manner. A processor p in an MON can itself be a network,
provided it has a well defined input-ountput map fp. In this section we
analyze the constraints that have to be imposed upon NCON composition in
order to guarantee the existence of a well-defimed global input-output map.

From the structural point of view s composition is simply a metwork of
netwvorks., The ’'processors’ of the composite network are MONs and the arcs
represent interconnections between outputs of MCNs to inputs of other M(Ns.
The architecture of the composition, obtained by regarding each MCN
component as a simple 'processor’ has to satisfy the constraints of Sec.
2.2. An architecture is called pdmissible if it satisfies the three

following constraints:

(1) No dsngling inputs and outputs
(2) No cycles

(3) 1t is structorally finite

19

TSI IV

P . PR — P . At RSO W SO U Ny Py S Y P

19

A A

T ——

T —— - — "t —— " > N Fa o T Ty

The importance of these constraints lies in the fact that an admissibdble
composition of admissible architectures is itself an adnissible architecture
(see Appendix B for proof). It is interesting to motice that the
admissibility conditions are instrumental also in establishing other
important properties of architectures. In particular, an admissible
composition of self-timed elements is itself a self-timed element [6], [7].

To establish the hierarchical nature of composition it is onmly
necessary to verify that an admissible composition of processors with a
well-defined input-output map also has a well defined input-output map.
This will be done by interpreting executions as decompositions of MCNs into
elementary parasllel and sequential combinmations.

Parallel composition of two architectures, 151 and %&. is defined as
the union of the two networks without any intercomnections between 251 and
%’ (Fig. 2-4a). Sequential composition involves the connection of every

output of to a corresponding input of 152; thus the number of outputs

of 151 nnstlequul the number of inputs of %& (Fig. 4-2b). Ve shall
denote parallel composition by ""‘1 # '{,’2 and sequential composition by
51_0 %&. The parallel composition of a countable number of admissible
networks is always admissible. The sequential composition of a sequence of

admissible networks is admissidble too, i.e.,
(sl.gz...o
is admissible bocause the unilateral nature of the cascade preserves the

finite ancestry property, while local-finiteness and countadility of

components are clearly preserved.

20

P
‘e aa a sk

In
e ,'/- ~
— o —
' =P 4, F—>

N 1.
[]
-
L

a. Parasllel Composition ‘91 # ’.Gz
o
il
) ..
(6,1 ‘ocz

b. Sequential Composition '!,1 0@2
) v Figure 2-4. Fundamental Architecture Compositions
L s 21
— PPN o . . A

v—w T T - T E————— " . b i e e B acaae. ol oy P - g v ~ — v~ —

Executions define » rearrangement of MCNs as a sequential composition
of subnetworks, each subnetwork beimg a parallel composition of processors.

. The MCN of Figure 2-1 can, for instance, be described as

al. '

(fl # e #l e)e(e # f2 # e)‘(f‘ #e# fs)‘(e # tS # e)‘(f6 #efe)

. where e is an identity input-output map. The importance of this N]
observation lies in the fact that the input-output map of any sequential-
parallel composition is well-define?, Consequently, every execution has a

well-defined input-output map. This leads to the following result,

!!001‘“ Z ,2

o

Every executable MCN has a unnique well-defined input-output map.

Proof:

la!

See Appendix C.

The theorem establishes the utility of the motiom of execution. While

7Y 0

each execution corresponds to a different ordering of the computations

required to evaluate the output variables of an MON, all executions

determine the same input-output map. And, while cach execution provides a .

different description of the network, they all correspond to the same MCN. .=.
Descriptions of computational schemes will be considered oguivaslent if

they determine the same input-output map. They will be considered

structurally equivalent if, im addition, they determine the same MON. ‘;

Structural equivalence, which amounts to differenmt choices of executionms,

leaves both the architecture and the function of the NCN unchanged. Other

types of equivalence transformations will affect both the architecture and

the function of the NCN but will keep its input-output map unchanged.

it atadndad

] 22 . __

VIO |

2.5 COMPARISON OF MCNs WITH OTHER NETWORK MODELS

2.5.1 PBlock-Diagrams and Finite-State Machines

Numerical algorithms are most frequently described in terms of
recursion equations involving indexed quantities, known as signals. Z-
transform notation and block diagrams (or signal-flow-graphs) are sometimes
used as equivalent descriptions of recursion equations.

The main difference between MCNs and Z-transform block-diagrams is in
the distinguished role of time in the latter model. A cascade connection of
three blocks, each with its own state (Fig. 2-5a) corresponds to an MCN of
infinite length (Fig. 2-5b)., Each row of the MCN represents a single step
of the recursion., Each input/output is a single variable, not a time-
series, While the MCN description seems wasteful, it does in fact enkhance
our understanding of the various possibilities of implementation. Moreover,
MCNs can describe irregular algorithms that cannot be described in terms of
recurrence equations. This means that every block diagram can be converted
into an MCN but mot vice versa. The conversion amounts to duplicatimg the
block diagram several times (once for every iteration of the recursion) and
converting delay elements into direct connections between consecutive
duplicates, as in Figure 2-5,

The preceding discussion considered only block-diagrams that correspond
to sets of recursion equations., Such disgrams always consist of delay
elements and memoryless operations. This means, of course, that omly block-
disgrams whose blocks represent finite~state machines can be converted in a
straightforward manner into an MCN. Any other block-diagram has to be first
converted into a state—space form (i.e., every block has to be represented
by a state-space model or s combination of such models) before it cam be
converted into an MCN. Thus, in particular, sany signal-flow-graph with
rational transfer functions can be transformed into an MCN.

The correspondence between block-diagrams and MCNs provide a simple
test for the executability (= computability) of algorithms represented by
block disgrams,

23

R

{x.} —> — {y,}
b= =l
z z
s. Block-Diagram

X0 Yo

X — 7

[o [J ®

® [] [] []

[] [] ® [J

b, Modular Computing Network
Figure 2-5., The Corsespondence Between Block-Diagrams and MCNs e

\

PORTW WY N

24

e

Ezecutability Test

A finite block-diagram (or signsl-flow-graph) whose blocks are
characterized by delay elements and memoryless maps is executable if, and
only if, the directed graph obtained by deleting delay elements from the
disgram (or equivalently, by setting 1_1 = 0 in the transfer functions) is

acyclic,

21‘00! ‘L

Since delay elements are causal, they can mever give rise to cycles in
the corresponding MCN. In other words, since all operations in the i-th
iteration temporally precede all operations in the (i+1)-th iteration, the
only cycles the MCN representation of a block-disgram may have must bde
contained within a single layer, corresponding to & single iteration. A
single layer of the MON is obtained by removing all delay elements from the

block-diagra=,

The test not only establishes the executability of a given dlock-
diagram but indicates how to transform non-executable networks into
executable ones. Comnsider, for instance, the network in Figure 2-6a. It is
non-executable if H(=) ¥ 0, because a cycle oxists in the network for
z =, However, the gsame transfer function can be realized by the metwork
in Figure 2-6b, which is executable.

2.5.2 Date-Flow—Grsphs and Petri-Nets

The MCN is, clearly, a data—flow-graph [18] with the additional
constraint that omly one token is placed at every input of the metwork, and
consequently, oOmly one token eventuvally appears at every output of every
processor. Thus, an MCN is gafe by definition., In spite of this

25

-~y

S

H(z)

a. Non-Executable Network

] H ()

[1-H(=)]"!

H(z) - H(®)

b, Equivalent Executable Network

Figure 2-6. Transformation of a Non-Executable

into an Equivalent Executable One

26

Network

observation every dats—-flow-graph (safe or unsafe) can be converted into an
MCN, os long as every firing of a vertex in the flow-graph removes ome token
from every input line and adds one token to every output lime. This
constraint implies that the data-flow—graph can be converted into s block
diagram involving only delay elements, advance elements and memoryless maps.
This block-diagram can in turn be converted into a (not necessarily
executable) MCN. The executability condition, when transformed back to the
data-flow-graph domain becomes a cycle sum test, sas described in [19]).

Petri-nets are more general than data-flow-graphs. They allow two
different kinds of vertices, known as places and conditions. Conditions
correspond to our comcept of processors, wkile places are combinations of
multiple sources and sinks and thus have no counterpart in the MCN model.
Petri-nets whose places have at most one input and at most one output are,
in fact, data-flow-graphs (also known as marked graphs [20]) and can be

converted into MCNs.

2.5.3 High-Level Programming Languages

Most high-level-language computer programs can be converted with little
difficulty into MCNs. Each assignment statement of the program becomes a
processor in the corresponding MCN. Program variables are mapped into

network variables according to the following rules:

(1) Each program variable, say x, is mapped into several network
varisbles, denoted by X4, 3, etc.

(ii) An occurrencoe of a program variable x in the right-hand-side
of an assignment statement is mapped into the same metwork
variable x; as the preceding occurrence of the same variasbdle
in the progiram.

(1i1) An occurrence of a program varisble x in the left-hand-side of
an assignment statement is mapped into a mew network variable,

i.e,, into X541 if the most recent occurrence was mapped iato
z
i.

27

!

— A

+ a4 A a. 4 4 A

-—

Recursions (do-loops) are mapped into sequential compositions of identical
processors, each processor corresponding to one step of the recursions., The

mapping of conditional recursions (’'if’ and 'while’ statements) is somewhat
more complicated and will not be described here. A separate technical memo
will be devoted to the details of converting computer programs and other
descriptions into MCNs, and vice versa.

The conversion of an MON into a computer program is straightforward:
Each processor is mapped into several assignment statements, and each

network variable is mapped into a program variable,

2.5.4 Sumpary

The preceding analysis has shown that MCNs are essentially equivalent
to computer programs, to block diagrams involving finite-state-blocks, and
to a subclass of Petri-nets (marked graphs). The major distinction between
MCNs and most other representations is the embedding of the mnotiom of
executability into the M(N model itself, Thus, the only way to design non-
executable MCNs is by the introduction of cycles in the network
architecture. Moreover, the test for executability is very ecasy to carry
out and can be included in any compiler for MCN representations, It is much
easier, on the other hand, to design malfunctioning Petri-nets or computer

programs, and much more difficult to detect the errors in the design.

2.6 FORMAL LANGUAGE REPRESENTATION OF N(Ns

To facilitate the application of the NN model to both VLSI hardware
design and software engineering it is necessary to develop a formal ianguage
version of the model, which preserves the convenience and simplicity of the
graph-theoretic formulation, Such a formal language representation should
not include more information that provided by the network graph, In
particular, it should involve no details pertaining to the implementation of
the MON in a particular type of bhardware. The matching between the
requirements of an MCN model and the resources provided by a particular

machine (e.g., sequential computer, dataflow computer, programmable

28

W R ——

Y

PR I

S
'

el a e aceideda’a &

wavefront array) should be carried out by the compiler, not by the
user/programmer. This will significantly simplify the coding phase of MCN
models and eliminate most of the common programming errors.

To achieve the objective stated above the language should de capable of
describing the two ingredients of the NON model, variables and processors,
and nothing else. It has to be a single assignment language, with each
variable carrying its own name, Only two types of statements will bde
allowed: onmne for describing the interconnection between processors, the
otber for describing the functional charscteristics of each processor.
Regular interconmection pastterns will be described by indexed loops. The
sequential order of imstructions inm a program can be arbitrary and has
nothing to do with the order of execution, which will be determimed by the
compiler im accordance with the precedence relation of the MCON, as well as
the available storage and computing resources.

The purpose of imposing such severe limitations upom the syntax of the
proposed language is to eliminate all flexibility in the tramslation of an
MCN model into a computer program. Decisions about the structure of the MON
model for a given signal processing problem have to be made prior to the
coding stage. Decisions about allocation of storage to variables and
computing resources to computations have to be made after the coding stage,
and preferably, by the compiler. This means that the coding stage itself
can also be automated in the future, enabling the user to specify his
designs interactively by ’drawing’ the MN model on & computer terminal,

Several languages have already been designed for modeling of parallel
algorithms/architectures., Some of these focus upon the physical aspects of
hardvare implementation and almost completely lack the fumctional
characteristics necessary to specify the algorithm, Others focus upon
functional characteristics with little attention paid to structure. Only a
few languages, like CRYSTAL (6], MDFL [7] and SIGNAL [23] maintain the
balance between structure and function. Our approach combines ideas from
these and several other languages with some unique concepts that emerged
from the research on MCN models.

The principles underlying the constructionm of a formal lasngusge for NN

models are demonstrated by the following example

29

Y T Wy . P - PR P G- Uy a L

X1 Y1 Z1 Wl

X2 YTEM ZTEM w2

Y2 z22
Figure 2-7. The MCON 'Example’

The corresponding MON program is

MCN EXANPLE (X1,Y1,Z1,W1; X2,Y2,722,W2)
BEGIN

AM (X1,Y1;X2,YTEM)

AM (Z1,W1;¥W2,ZTEM)

AS (YTEM,ZTEN;Y2,22)
END EXAMPLE

PROC AM (X,Y;A,N)
BEGIN

Ar=X+Y

M:=XesY
END AM

PROC AS (X,Y;A,S)
BEGIN S
A:=X+Y ‘

§:=X-¥]

30 [

e 3 T n . T—— w—— v —— ———— LIRS b R MRt gt e T o el

2 END AS
_i The unique features of the language are:

’:'3 1) Single assignment - each varisble has its own name,

2) Modularity - each procedure is self contained and can be compiled
and verified independently of the other procedures,

3) Mierarchy — there are three levels of specification: (i) Networks
(MCN), which consist of another network or of atomic processors
(PROC); (ii) Processors (PROC), which consist of assignment
statements; and (iii) Variables, which may be of the types commonly
used in conventional computer languages, and are used to comstruct
assignment statements.

4) Information hiding - the components of the MCN program unit are
specified only in terms of their inputs and outputs, without any
details about their internal structure.

5) Modifiability and localization — the inners of every program unmit
can be modified without affecting the correctness of other units,
The correctness of the modified unit can be tested without
reference to other units.

Notice that the order of program units as well as the order of assignment
statements in a processor is immateriasl. This is made possible by the
single assignment convention which associates one variable with every arc of
the corresponding MCN graph. The names of processors and networks, on the
other hand, can be duplicated to indicate identical inmer structure (e.g..,
there are two 'AM' processors in the network 'EXANPLE’).

A forma]l language representation of an NON model provides no
information about the order in which the computations implied by the model
will be executed. Following the precedence relation specified by the model,
the computations can be arranged in layers, or wavefronts. The computations
belonging to one layer can be executed in an arbitrary order, or evenm all in
parallel. On the other hand, the execution of the (i-1)-th layer must
procede that of the i-th layer. The reformulation of the MCN model in terms
of layers, which was introduced in Section 2.4, emphasizes the sequential-
psrsllel mature of every MON model, and serves as an intermediate step

between the network-type charactexr of the MON model and the purely

sequential nature of conventional computer languages. This wavefroat

representation also assists in determining varisbles that can use the same

' !
P |

Anesnieudanbundefnaiom o adesined T 2 IR RN S VL S W SN S e

storage area, and in allocating physical resources to computations when the
number of available processors is less than that required for the fully
parallel execution of a given layer. Thus, the transformation of an NN
model into a layered format plays a central role in the compilation of MNCN

programs for execution on s specified machine.

2.7 SUMMARY

A unified model for multilevel description and analysis of parallel
algorithms and architectures has been developed. The model is gemeral
enough to describe any computational algorithm and to explicitly exhibit its
parallelism.

The basic descriptive tool is a precedence graph, which indicates all
possible implementations of the algorithim in either software or hardware. A
simple structural comdition (no cycles in the graph model) guarantees that
the corresponding algorithm is executable. Different implementations of the
same algorithm correspond to differemt orderings of the vertices (processing
elemonts) of the precedence graph., Translation of software programs, data-
flow graphs and z-transform descriptions of algorithms/architectures into
precedence graphs and vice versa is easy to carry out.

The precedence graph approach clearly demonstrates the fact that
storage (memory) requirements are determined by the implementation chosen
for an algorithm rather than by the algorithm itself. Thus, the model of a
single computing cell need not include storage at all, The most general

cell is therefore a multiple input, multiple output map, viz.,

Y = £(U, 0)

where U denotes inputs from other cells, 6 denotes parameters, which
may be locally stored in the cell, and Y denotes outputs. A cell is
called:

linear — when f is linear in U (but not necessarily in 0)

time invariant - when parameters are time-invariaat

32

e e

o

‘o g

g r-

Notice that a cell may be, in general, nonlinesr and time-varying., However,
it is always causal.

An actus]l hardware implementation of 2 cell involves also a delay of
the output signal Y, consisting of a computation delay (the time required
to compute Y once U is available) and s propagation delay (the time
required for the output signal Y to reach its destination). The analysis
of such delays and their effects upon the throughput of the MCN is preseated
in the following section.

33

P ——p——p—

S

19

R I

34

~‘;_

-
- p-
1

SECTION 3
STRUCTURAL YSIS OF MCNs

The notion of execution, defined in the previous section, provides
several quantitative characterizations of the MCN architecture. In
particular, it canm be used to number the processors of an MCN and to
introduce concepts of dimensionality. A refinement of the notion of
execution leads to time schedules and to the formulation of composition
rules for execution times. Thus, the objective of associating a unique
execution time with every output of an M(N is achieved., The third
objective, that of associating a unique measure of complexity with each NCN,
has yet to be accomplished, Currently there is no consensus even upon the
measure of complexity for a single processor, let alone for a network of
processors, Some progress has been made in characterizing complexity in
terms of ’‘ares,’ but more research is required before commonly—accepted
rules for composition of complexity can be formulated. For this reason the

topic of complexity will not be considered in the sequel.

3.1 NUMBERING OF VARIABLES AND PROCESSORS

The concept of execution, which was defined in Section 2.3, defines »

nuombering E(x) on the variables of an NN, viz.,
t 3 Si ¢(==) E(x) = i (3.1)

Since the partitioning [Si} and the numbering E() determine each other
and convey equivalent information, we shall call the function E() itself
an execution. Several variables may share the same value of E(), which

means they belong to the same level S If each level of an execution

i.
contains exactly one variable the execution is called geguential. The

function E(x) defines, in this case, a sequential ordering of the

35

el g te

—

i b

PSR Uy |

. ————— ——— R P ———-—

y variables and of the processors comprising the MCN. The numbering of
I variables determined by an execution E() is consistent with the

precedence relation since we clearly have

E(x) 2 1 + max {E(y); y & a(x)) (3.2)
b 4

Similarly, we can define a numbering of the processors by

o E(p) := max (E(x); x ¢ Xi(p)] (3.3)

]) :
The value of E(p) indicates the earliest instant at which all inputs of

the processor p become available. VWe can also define a precedence

relation for processors, viz.,
Q->p

if there exists a directed path from q to p. This relation, in turn,

determines the ancestry set a(p) of each processor by
a(p) := {q; q e P, q =) p} (3.4)

It can now be seen that an analog of (3.2) holds for the numbering of

processors, viz.,

E(p) 2 1 + max {E(q) ; q ¢ alp)) (3.5)
q

Since a typical MCN has fewer processors than variables, the numbering of

processors is a more coavenient tool for structural analysis of am MNCN.

3.2 DIMENSIONALITY AND ORDER

A family of sequential executions (B’()} on a given NN is called

representative if

_L 36 o

{
1
1
1
1

-
i‘.‘..' |

! Qe a(p) <==> E (@) CE/(p), s11 i (3.6)
L]
{ Notice that a representative family can mever consist of a single execution . 1
q (except in the case of a purely sequential MON) because there exist always

: - two processors ¢q, p such that E(q) (E(p) evea though q does not ‘
h- precede p (mor does p precede q). The following result shows that r.--—-<

every MCN has at least ome representative family.

. Theorem 3.1 S-

The collection of all sequential executions of a given MCN is a

representative family.

Proof:
. By the definition of execution
q ¢ a (p) == E(q) < E(p)
_. for every execution (sequential or not). To prove the converse assume that

(Bi()} is the collection of all sequential executions, and that for some

processors p, q
E‘(q) <Bi(P)' sll |

Clearly p csnnot precede ¢, bdut they may be inmcomparable., In this case

there exists a non-sequential execution E() such that

Lo

E(p) = E(q) .

3

Since every execution can be transformed into a sequential omne by ."i
arbitrarily ordering the variables in each level, it follows that £ can be ,

converted into s sequential execution, say Bo. such that)

&

b 37 Lo

CIRA N LI S o T e A el At s S . T, Py - ~

Ro(q) > Eo(p)

This, bowever, contradicts the assumptions. Hence, p, q cannot be

incomparable and we must have q ¢ a (p).

A representative family with the smallest number of members will be

called a basis (it need not be uvnique). The cardinality of bases is defined

jA as the dimensionality of the MON in consideration. The members of a basis
[Ei()} define a coordinate basis for the network, such that the -
coordinates of a processor p are {El(p). Ez(p). cess En(p)]. Notice that

the dimensionality of a network is bounded below by the dimensionality of

all its subnetworks, so adding long chesins of processors to & 2-dimensional

network cannot redu-e the overall dimengsion below 2 (Figure 3-1).
Every basis o3 an MC, Jetermines a unique non-sequential execution
obtained by ordering the processors according to the sum of their basis

coordinates. For the example of Figure 3-1 this execution is

(1), (2,3) (4) (5) . . . (n)

The order of a basis is defined as the number of variables in the largest
layer of the parallel execution determined by the basis. For the example
above the order is 2 since there is a set of 2 processors in the parallel
execution. Since an MON may have many bases it has no unique order.

Moreover, each execution E (not necessarily associated with a basis) has

its own order, defined by

ord (E) := max {p; E(p) = i) (3.7
i

Executions can be implemented in hardware by mapping each layer into a ——y

single iteration, with all the processors in the layer implemented in
paralliel., The order of an execution, which is the number of processors im
the largest layer, is therefore a measure of the hardware complexity of such

an implementation. 2 -

Figure 3-1. Example of a 2-D Network. The basis is formed by
the executions 1,2,3,4,5,...,n and 1,3,2,4,5,...,n.

39

| S

e
L'y

) AR

o
ok

P
L

Once we have coordinate bases at our disposal we can apply metric
arguments to the representation of an MCN. For instance, we can dofine
distances between processors and introduce the concept of local
communication between processors in a rigorous manner. However, more
research is required to establish the properties of metrics defined by
coordinate bases; in particular, it is not yet clear how the choice of the

coordinate basis affects the metric.

3.3 SCHEDULES, DELAY AND THROUGHPUT

The execution of an MCN represents only its precedence relation and <-

does not take into account the actual time required for execution. The
evaluation of each variable requires a certain amount of execution time when
implemented in hardware. Since each output of a processor may involve a
different execution delay, execution times have to be specified for arcs of
the precedence graph rather than for the vertices. The execution time
associated with a variable x will be denoted in the sequel by T(x). This
is the time required to evaluvate x from its immediate ancestors
(= parents), i.e., from the variables that serve as inputs to the processor
whose output is the variable =x.

The incorporation of time delays into the notion of execution results
in a schedule, which is formally defined as a function <v(x) that satisfies

the comstraint

(x)) T(x) + max {t(y) ; y ¢ a(x)) (3.8a)
y

and is zero for the network inputs, viz.,
x e Xi(P) ==) ¢(x) = 0 (3.8b)

This copstraint guarantees, in particular, that the parents of x will be
available at time <(x). Thus, schedules .. refinements of executions, 1In
particular, with every execution E() we can associate a schedule <()

by choosing

*(x) = max {v(y) + T(x) ; EB(y) = E(x) ~ 1) (3.9)
y

40

ol

R
b

lal"

-

s ‘ Such schedules are, gemerally, non-minimal in the sense that some operations
EE have all their inputs available before their scheduled execution time, i.6., - -
(3.8) bolds with a strict inequality for such operations. A schedule which
satisfies (3.8) with oquality for every x ¢ X is called minimsl.

Minimal schedules are important because they characterize the fastest

executions of a given MIN. This propé;iy is made explicit by the following L
]

result,

Theorem 3,2 | - -

Every structurally finite MCN has a unique minimal schedule ¥(). The

minimal schedule satisfies
T(x) ¢ t(x) (3.10)

for every x ¢ X and for every schedule <().

Zroog H

Since by Theorem 2.1 s structurally finite MCN bhas a countable number
of variables, the result can be established by induction. Thus, let S be
a subset of X that is closed under the ancestry relation, namely for every
x ¢ 8 we must have a(i)Cz'S. Assume that S has already been assigned »
minimal schedule <T() and that this schedule also satisfies (3.10).

Choose a variable y not in § and consider the augmented network
determined by S\Ua(y). We need to sbow that <T() can be extemded to
this augmented network and that it will satisfy both (3.8) and (3.10) The

schedule T() is now extended to a(y) im the following manner:
(1) Assign T(2) = 0 to every z & al(y) that has no ancestors.
(ii) Jdentify the collection of variables for which all ancestors have

Nl already been assigned a schedule (this set is mever empty).
’ Assign to each one of these variasbles the schedule -

T(z) := T(z) + max {T(w); w s al3))
v

e —— ")
PR

For every w e a(2), either x(w) =0 or wesS, so that
T(w) < t(w) for any schedule <v(). Since sny schedule <«()
has to satisfy (3.8) we obtain

t(z) > T(z) + max {v(w); w e a(2z))
w

2 T(z) + max {T(w); w e a(z)) = x(2)
w

which proves that (3.10) is preserved in this step.
(iii) Avugment S, wviz.,
. S :=8Sa(y) ‘ -

and go back to (ii).

The repeated application of this procedure results in the assignment of
T(x) to every variable of the MCN. The resulting schedule is minimal,
i.e., it satisfies (3.8) with an equality, umique (by construction) and also

satisfies (3.10).

As with executions, we cap also define schedules for processors. The

schedule of a processor p ¢ P is defined as

©(p) :=max (T(x); x ¢ xi(p)] (3.11)
p ¢

in snalogy with 3,3, It is the instant at which all input variables of the
processor become available. Some of the inputs of the processor may become
available earlier and neced, therefore, storage or buffering until they canm
actually be used. A varisble x is called critical with respect to a given
schedule <() if

xs Xi(p) =u) t(x) = t(p) (3.12)
and non-coritical otherwise. Thus, the schedule of each processor is
determined by the schedule of its critical fmputs. Since non-critical

variables require storage the genmeral objective of scheduling is to reduce

the total storage requirements.

42

ol

al

-l

o

RS R R e e e s e S MRt SN Jnath e auen _oa ey 2

Storage is measured by the product of voluwme (e.g., the number of bits
to be stored) and duration. The duration of storage for a variabdble
X e Xi(p) is the difference between the time it becomes available and the

most recent instant it still needs to be availadble, i.eo.,
max {t(y) - T(y):; y ¢ Xo(p). x -y} - <(x)

This interval will be minimized if we choose the differemce <t(y) - T(y) as
short as possible., In view of (3.8), we have to choose <(y) - T(y) = x(p),
namely- the minimal schedule also minimizes the storage requirements of the
network., The minimal schedule still has both critical and mom-critical
veriables. However, only the critical ones determine the schedule, ss

demonstrated by the following result.

Lomms 3.3

Every processor inm a structurally finite MCN is connected to s network
ioput by a2 finite path whose variables (arcs) are critical under the minimal

schedule,

2!00! H

The definition of a critical variable implies that every processor has
at least one critical input variable. The critical path is obtaimed by
tracing back through the critical inmputs of the preceding processors. Since

the ancestry of each processor is finite, this procedure terminates in a

finite number of steps when the path reaches a network input.

43

dantestesnhstuntunduseitinttesninutdusiontineiheshenihotiihanlodnnibmitt ot i,

T

I I
. «

Corollary 3.3

The minimal schedule of a processor equals the length (sum of

processing delays) of a critical path that connects a network input to this

processor. -

The corollary implies an interesting principle for the physical design
of hardware implementations—-~critical paths need to be considered first so
that the length of the physical connections along the path can be minimized. --
Non-critical paths camn accommodate extra propagation delays and can, there-
fore, be designed later.
The construction of a schedule is based upon the assumption (3.5b) that
all MCN inputs are available at the very beginning. Thus, a zero schedule
was assumed in (3.8) for every MCN input, i.e.,

xe Xi(P) ==) t(x) = 0

This is, bowever, inessential, since many of these inputs will not be
required until much later. The scheduling of the nmetwork inputs can be
modified, once & schedule <t() bhas been determined, to reflect the
earliest instant they are required in the execution. Thus, for every

xe Xi(P) rodefine the schedule of the inputs to be
Xi(P) =) t(x) := <(p) where x & Xi(p) (3.13)

and no buffering, or storage, of the inputs will be necessary. This is
particularly important if not all the inputs can be made available in the
same instant, e.g3., in real time processing of time—series. Notice that
this modification in the scheduling of inputs does not affect the schedule
of any other variable in the metwork, This is so because omly mon—critical

input variables are adjusted. The meaning of (3.13) is that all metwork

inputs are made critical to reduce the storage requirements of the metwork. ,-IFij
The schedule of output variables is commonly known as delay. The delay

of x is the time hat has elapsed from the moment some variable in a(zx) - S

44

|
R
el

Emtolemdhecn it oon .

becomes available unti]l the moment the variable x itself becomes

available. This is, clearly,

S - oaoh
LA t . l..
=

t(x) - min {t(y); y ¢ a(x))}

-
S

and in many cases it will be equal to <(x). In typical signal processing
applications the delay of outputs ususlly increases without limit as more

and more inputs are applied to the processor and more and more outputs are

evaluated. In such cases one is interested in the rate of output
evaluation, commonly known as throughput, rather than in the delay of the
outputs. The throughput is roughly the pumber of MCN outputs that are
evaluated in a unit of time. Since this rate may vary, we peed a more
rigorous definition based on the concept of schedule.

Every schedule determines a temporal ordering of the MCN variables (it
need not be seguential), which is consistent with the precedence relationm
between variables. In order to quantify the rate at which outpot variables

are evaluated, we define the output counting function
No(r) := number of elements in the set (3.14)
{ri ye Xo(P). t(y) ¢ <)
The input counting function can be similarly defined, viz,,
Ni(t) := number of elements in the set (3.15)
{y, y e X, (P), <(y) (%)
We can mnow plot the counting function N(tr) as a function of T for both
the inputs snd the outputs (Figure 3-2), The functions N‘(t); No(t) are,
of course, stasircase functions (indiceted by broken limes in Figure 3-2) and

can be upper~bounded by a pair of continuous, plecewise-linear curves
(indicated by the solid linmes in Figure 3-2). The slope of these

45

] Figure 3-2. Input and Output Throughputs of an MCN.

D 46

[N

Ra i A A S ot Jengl S e gy i e G e Padinens 0 i Co

curves (which are always strictly monotone increasing) is a measure of the
rate of information flow into the metwork and out of it, and will be called
the input and output throughput, respectively. A schedule is called regulsr
when both its input and output throughput are periodic with the same period
(and, in particular when both throughputs are constant), An MCN is called
temporally-regular when its minimal schedule is regular. Many temporally-
regular networks have equal input and output throughputs, but this need not

be true, in general,

3.4 SPACE-TIME DIAGRANS

The continuous-time character of the schedule is best demonstrated by
introducing s time-axis into the graphical description of an MCN., The
vertices are arranged so that the vertical displacement from the top of the
diagram to the location of any given vertex p imndicates, on an appropriate
scale, the value of the schedule <(p) for this vertex (Figure 3-3, compare
with Figure 2-1). This gspace—time diagram has several interesting

properties:

(1) All arcs point downward,

(2) The vertical displacement of an arc indicates the total execution
time associated with this operation, including any buffering time
that may be required beyond the actval execution time T(x).

(3) Changes in local execution times are easily accounted for by
shifting the corresponding vertices up or down along the time
scale, The global effects of such shifts are clearly depicted by
the disgram,

(4) Nomn—executable MCNs (with zero or megative execution times) can
still be described by the diagram, This is useful to establish
equivalence between various descriptions of the same MCN (e.3.,
precedence graphs and signal flow graphs).

47

~—E Y

7

—_——

o .

]

Wy

i
Time 4

: _

j Figure 3-3. Introduction of s Time Scale into the Architecture i

- I
]
4
9

' “® A -

T ——_——

Ei

"1

f-

The collection of processors (vertices) with the same schedule form an
isochrone.
The execution of a network according to a given schedule may now be

interpreted as the propagation of a single wavefront of activity through the

architecture. The location of the activity wavefront at any given instant
is indicated by the corsresponding isochrome. Observe that the isochrones
are parallel straight lines (or parallel planes if the precedence graph is
described in a three dimensiona]l space) and do not intersect. Also notice
that the inputs and outputs of a temporally-regular metwork are evenly
distributed in time (i.e.,, along the vertical axis of the space-time
diagram). These properties are particularly significant for the analysis of
iterative MCNs, which is carried out in Section 4.

As an {llustration of the equivalence between various descriptions of
the same MCN comsider the block—diagram of an IIR filter (Figure 3-4a). The
corresponding MON (Figure 3-4b) can be rearranged in many ways without
modifying the architecture of the network. However, if Figure 3-4b is
interpreted as a space-time diagram (with time being the vertical axis),
such modifications result in different schedules and also in different
block-diagrams. In particular, the delay clements can be moved to the lower
path (Figure 3-5) or split between the two signal paths (Figure 3-6). The
latter version is the only one that can be implemented in hardware because
it contains only downward-pointing arrows; the other two versions
require instantaneons evaluation of each variable associated with a
horizontal arrow., The third description makes it also clear that the time
interval betweer successive application of inputs is equal to two delay
units. It is also possible to associate unequal computing times with the
forward and backward propagation through each block. After sll, the forward
path only feeds information through the block while the backward path
involves s multiply-and-add operation. The resulting space—time disgram
(Figure 3-7) has delays Tf. Tb associated with the forward and backward
paths, and the input interval is clearly 'l‘f + Tb‘ Notice that the block
diagram description involves two different delay blocks: This is known as a
multirate implementation (8). The throughput rates are, mevertheless, equal
to ('l'f + 1%)-1 for both the input and the output.

The same technique can be applied to analyze the several proposed

systolic-array-1like implementations for matriz multiplication: the

49

i

b
1
fay

ron

hexagonal array of H.T. Kung [5), the improved hezagonal array of Welser and

Py

Davis [4], the wavefront array processor of S.Y. Kung [7] and the direct -

aagn

form realization of S, Rao [10). Dotails are provided in Appendix E.
The analysis of the previous examples makes it clear that the common

MCN architecture shared by all the representations of & given processing

system induces certain invariants. For instance, the total number of
outputs of each processor remains invariant, even though in some
representations some of these outputs are connected to s local memory rather
than to a nearby processor (Figure 3-8)., The same is true for the total
number of inputs of each processor. Notice that the blocks in Figure 3-8a
are still the same as in Figure 3-4a, including the orientation of paths
(one forward, one backward). On the other hand, the roles of the blocks are
quite difforent; in particular, outputs are obtained from the local memories

rather than from the left-most block alome, as in Figure 3-4a.

. Al

50 L

i Block O Block 1 Block 2
] - - - - - - - - T -

a. Block-diagram

b. Space-time diagram

Figure 3-4. Schematic Description #1 of an IIR Filter

51

ooy v T R > -
Input .| ——— ——> f—>
Block O I Block 1 Block 2

Output

s, Block-diagram

b. Space-time disgram

Figure 3-S. Schematic Description #2 of IIR Filter

1AJA-A"

Input -—-»E }——-A l
___ Block 1 :

Output f— _LDJ(_. :
- B

s. Block-diagram

b. Space-time diagram
Figure 3-6. Schematic Description #3 of an IIR Filter _
53 -

- - - - - — s -———— L . - - - - -

'.i- oL e T N v IR I. i i X N e LA Sl dedi e e Austh St e sows hoe e |

s'~l.

.‘.'j

I
‘o

i
]
-1
4
1
|

!

.

Block 1 Block n

- . N RN

a. Block disgram

Wl
d

- la?
S
4

A
i

-

- e

b. Space-time diagram

Figure 3-7. MNultirate Implementation of an IIR Filter ('l'f < Tb)

54

P U R S U U R S i . - . . . R L . .

' Input
i - np_“__» Block 0 | —— Block 1 ——_'-'>' Block 2 T

a. Block diagram

0 0 0

b. Space-time disgram

55

Figure 3-8. Schematic Representation of IIR Filter Involving Loocal Nemory

a - P Yo - - - - - -
o o o~ e cendnand 3 N D DV T G Wy

3.5 SUMMARY

Techniques for analysis of pipelinability, schedules, and throughput in
systolic-array-like configurations have been deieloped based on the MCN
representation of parallel algorithms/architectures. Architecture
evaluation was also based on graph theoretic properties of the MON model:
The dimensionality, degree of parallelism, and throughput of a given
architecture are all determined by analysis of its precedence graph.

The major difficulty in the analysis of computing networks lies in the
translation of low-level input-output relations to high-level ones, and vice
versa. VWe have shown that the problem reduces to the factorization of the
global (high-level) input-output map into a product of purely parallel maps,
corresponding to the concept of wavefront propagation in the network. More
specifically, the global input-output map is a sequential composition of the

maps corresponding to the layers of an execution.

56

[S—

Wl

- la!

w— e Ty — —r " - ——— T v v

e sben ol o8 o4 .T
R

oL

SECTION 4
P - -
S ITERATIVE AND_COMPLETELY REGUL ORKS
5 3
&5 -4
L B

4.1 ITERATIVE MCNs AND HARDWARE ARCHITECTURES

An MCN is cslled iterative when it can be described as a sequential

composition of identical subnetworks, i.e.,

¢ =GeEe .G -

network

Each of the identical compoments % will be called an iteration. Onme
resson for this name is that the MCN can be executed by implementing o
single component ¢ in hardware and simulating a sequential composition of
such components by spreading the execution of the components in time. The
motivation for studying iterative MCNs is that most signal-processing

algorithms and, in particular, all systolic-array-like architectures can be

described by such networks. Observe that every block-diagram representation
corresponds to an iterative MCN. The iterative structure induces certain

regularity constraints upon the M(ON which lead to a& simplified -
representation, '

The minimal schedules of iterative networks are, clearly, periodic with

i

the same period for input and output schedules. Thus iterative MCNs are
temporally-regular. In addition, they are functionelly-regular in the sense
that each iteration involves the same function . Comsequently, their

properties can be determined by amalyzing a single iteration. For instance,

-4..4-4441

the entire network is acyclic (hence executable) if a single iteration is

acyclic. In particular, the executability of z—transform representations of -

S
PR

iterative M(ONs is tested by removing all separators and examining the

remaining directed graph for occurrence of cycles (see also [9]).

—aalaa

Similarly, the (minimal) schedule of the network can be determimed by

considering a single iteration,

PR SR ¢

Iterative M(Ns are commonly described by recursion equations (or
equivalently by z-transform diagrams), data~flow diagrams (marked graphs),
or by 'do~loops’ in high-level programming languages. While precedence
graphs of iterative networks still indicate all.possible executions,
recursion equations restrict the choice of execution to one or at most two
possibilities (Figure 4-1). And while precedence graphs avoid the pitfall
of non-executable iteration by explicitly describing each iteration as part
of an executable (acyclic) precedence graph, data—flow diagrams contain
cycles which may cause the entire MON to be non—executable.

Since all iterations are identical, the schedules of every two
consecutive iterations differ by the same constant, which we shall call the
inpot interval. The input interval is the period of the input schedule or,
equivalently, of the input throughput, as well as of the output schedule
(recall that iterative M(CNs are temporally regular). It determines an upper
bound on the rate at which inputs are applied to the network (lower rates
are permitted, but require additional buffering).

The time-space diagram of anm iterative MCN corresponds to its minimal
schedule and is, therefore, periodic. It is important to notice that the
period (= input interval) is, in general, shorter than the time required to
complete the execution of a single iteration (= the iteration delay). This
means that hardware realizations of the MCN can be pipelined: New inputs
can be applied before the processing of previous inputs has been completed.

The functional regularity of iterative MCNs implies that they can be
implemented in special purpose VLSI hardware by mapping the precedence graph
of a single iteration directly into silicon, Each processor is mapped into
a cell ('processing element’) and precedence relations are mapped imnto
interconnections between cells., Neither translation nor hardware
compilation are required to accomplish this mapping since the hardware
architecture is an exact image of a single layer of the network
architecture. An execution is now interpreted as the propagation of a
sequence of wavefronts through the hardware rather than the propagation of
single activity wavefront through the iterative MCN (Figure 4-2), The time
spacing of these wavefronts equals the period of the underlying MCN minimal

schedule,

58

———

i -
a. Parallel Iaput Application

- /
- b. Bequemtial Input Application o
: o]
‘L- Figure 4-1. Equivalent Pipelined Executions of sn NN, . :
! -
- _f-;1
!
@— 59 L
il ol R SRS

!
1
1
)
:
i

Since a single layer of the MCN is used to ’'simulate’ the entire
network each processor is activated many times and each arc of the hardware

architecture corresponds to a time-series of variables rather than to a

ey st SR SRR aRat 4 SRR

single variable. This raises a design problem of a mew kind: It is

Qi

) necessary to guarantee that variables do not disappear before they have been
i used to evaluate their successors. There are three different solutions to

this problem:

L (1) Iterative execution: A new iteration is initiated only after the

execution of the preceding iteration has been completed. This
means that the input intervel is extended (by buffering of

' intermediate results) to the length of the iteration delay, and

the time-overlap between iterations is completely eliminated.

(2) Scheduled execution: The (minimal) schedule of the metwork is
determined in advance and execution is carried out according to
schedule. Buffering is provided to guarantee the availability of
inputs to processors on schedule (only non-critical variables need
to be buffered).

(3) Self-timed execution: Processors are activated as soon as their
inputs become available. Acknowledgment signals (’'hand-shaking’)
are used to guarantee the correct transfer of data between
processors.

While scheduled execution offers the shortest execution time and requires a
fairly simple control system, it is extremely semsitive to scheduling
perturbations. Such perturbations, which are caused by clock-skewing and
local variations in execution times, may result in loss of syachromization
between cells and a complete failure of the system. Iterative execution is
insensitive to scheduling perturbations and requires a very simple coantrol
system, but wastes processing time since the bardware is idle most of the
time, Self-timed execution provides a mnice tradeoff between these two
extremes: JIts execution time is only slightly longer than the theoretical
minimum achieved by scheduled execution; and the control system it requires
has asbout the same complexity as the timing system for scheduled execution.
It is interesting to observe that the conditions for self-timed execution
[(16), [17] coincide with the concept of admissible composition, which was
shown to be the necessary and sufficient condition for executability in
goneral. Thus, every M(N can be implemented as a self-timed system.

60 3

...........

T W S T . ey w w e -

Y T e YT e

8. MCN Perspective

- e e e - e m e e

_— e e e e Em e e e e e e e

T e e e e e e e e e e e e e e e e o

b. Hardware Architecture Perspective

Figure 4~2. Execution Interpreted as Activity Wavefront Propagation

S D N —— Ay rp———y

L
o
: |
e 61 Fw}
T R
o . . it . e

The notion of self-timed execution suggests the introduction of self-
timed block-diagrams. These are obtained by removing the delay-elements
from a conventional block-diagram and replacing them by direct conmnections,
The hardware implementation of such self-timed dingrnn: is straightforward

provided two simple rules are obeyed:

(i) Each cell is activated as soon as all its inputs become available
and deactivated as soon as all its outputs have been evaluated.

(ii) Each input variable is accompanied by an acknowledgment line.
Each input port (sink) acknowledges the arrival of a new input
variable to the processor that evaluated this variable. The
acknowledgment is sent when the processor conmected to the input
port becomes activated.

These rules assume that each cell is provided with sufficient memory to
store its output variables until they become acknowledged.

The acknowledgment of inputs associated with self-timed implementations
can (and should) be reflected in the space-time diagram of the network.
Acknowledgment signals are just one more set of variables in the network,
and are represented in the space-time diagrams by arcs, as any other
variable. For instance, a cascade comnection of (identical) processors
(Figure 4-3a) has an input interval of tl + tz where 11 is the execution
time of the processor and <, is the delay between the reception of an
acknowledgment signal from the subsequent processor and the transmission of
an acknowledgment signal to the preceding processor (Figure 4-3b). The
interval t, includes the propagation time through the processor and the
copnecting wires plus the time required to carry out checks on the input
data (parity, error detection, fault detection, etc.). Notice that the need
for explicit scknowledgment can be eliminated in many cases, e.g., when
there is ar information carrying path along the cascade in the backward
direction.

The horizontal dimension of space-time disgrams can now be interpreted
s hardware: Processors located along the same horizontal 1line

(isochrone) represent computations that need to be carried out

62

N 3

fe?

®

AT AR

1
1
F

'

|
AAJ e e e g

3
A

R

— A e A at
P Lt T
P L -
=- - .
. ‘ P

R

g f g s
,A . r' . 0

. VP
s fa e s

As

As

As As ‘

a. Self-Timed Block-Diagram

Figure 4-3. Propagation of Acknowledgment Signals (AS) ia
S8elf-Timed Systems

63

simul taneously and must, therefore, be implemented in parallel hardware. Ve
shall adopt the convention of interpreting the vertical dimension of space-
time diagrams as pure time: Processors located along the same vertical line

will represent computations that are carried ont' by the same processing

AOREMAS . aetamc

element but during different (non-overlapping) intervals of time. Thus, for

instance, the MON of Figure 4—4 cap be implemented in hardware with four
processing elements (Figure 4-4b). Each vertical column of processors in
the space-time diagram of the MCN (Figure 4-4a) is mapped into a single
hardware cell; connections between columns are mapped into physical
connections between cells and connections within columns are implemented by
locally storing intermediate results inside the appropriate cells.

Self-timed or scheduled execution is, indeed, faster than iterative
execution only if the input interval is shorter than the execution time of a
single iteration. An implementation of such an execution will initiate a
new iteration before the execution of the previous iteration has been
completed. Such implementations deserve to be called pipelined. Thus,
iterative executions are never pipelined, while self-timed (or scheduled)
executions are pipelined only for pipelinmable M(Ns.

Notice that the input interval is uniquely defined for every
temporally-regular NCN, but the iteration delay (= execution time of a
single iteration) depends upon the partitioning of the MON into iterationms.
Since this partitioning need not be unique, an iterative MCN may have
several hardware realizations, each with a different iteration delay. Thus,
pipelining is primarily a property of a given hardware realization. Am MCN
is considered pjipelinable if it has at least one pipelined realizationm.
Pipelinability is most frequently associated with completely regular N(Ns
(= systolic-array—like networks). The comnection between complete
regularity and pipelinability is discussed in the following section.

]
1
1
64 o

R praG—_—

U ——

(X X}
soo
o000
o0
"

a. Space-Time Diagram -~ 1

T PR
! T e
PPNy WY B WY

S
Aodbdatal

b. Self-Timed Block-Diagram :i_._;.}

Figure 4-4, Hardware Implementation of an Iterative MCN,

AL SO S AP O G ST YU W Py aaa ., o — -) L N L P

a. Direct Form

N

b. Interleaved Form

Figure 4-5. Resource Sharing by Interleaving

66

o!

of

lal

BT s Tt e . Lo e AT e e TR S et e Dt a/nd Jale-nt artl Jaud Jndl St el M i S el codl el oees et cous e o

4.2 COMPLETELY REGULAR MCNs

.- A completely regular MON is one that can be represented by a regular

[.. multidimensional grid, and in which all input-—oﬁtpnt maps associated with
the vertices are identical. Thus, the vertices of a completely regular MCN
can be mapped into points of the multidimengional grid Z® in the
n-dimensional Euclidean space Rn. where Z denotes the set of integers;
the arcs of a completely regular MCN become vectors (m—tuples of real

‘ numbers) representing the directed straight lines connecting points of the
- grid Zn. Clearly, not all points in z" correspond to vertices of the

I MCN. Those that do determine the domain of the MCN in Z". The

1 requirement of complete regularity translates into the statement that the
s vectors (arcs) emanating from any point (vertex) in do not depend upon
b

uk.. the choice of vertex. Consequently, the enmtire MCN is charactexized by:

b (i) the set of dependence vectors {di} emanating from a single

vertex;

(ii) the domain T C Z%
and

(iii) the input-output map f

f: (xll X Xy) xp) -=> (yl. seseyp yp)
associated with every vertex in the domain T.

A curious consequence of this definition is that the input-output map £
has the same number of inputs and outputs, since the number of arcs
emanating from a point in T is always the same as the number of arcs
converging to a point.

Not every set of dependence vectors {di] determines a valid MON. For
instance, the directed graph representing am MCN has to be acyclic, In

terms of dependence vectors this means that it is impossible to find T
positive integers {ki) such that zkidi = 0, Another requirement is - ‘_;l

67 LI

R
that the ancestry of every vertex v e I' (i.e., the set of all points from ‘
which v can be reached) has to be finite, This constraint is trivial if - ___j
T' is a finite sot; however, if T is infinite (as is often the case with ',-. A
signal processing algorithms) this constraint 1!;1)1103 that T has to be
bounded in the directions {-di]' 1

In the sequel we shall focus upon completely regular M(Ns in 23. ___Lj

because such M(Ns correspond to space-time representation of planar
systolic—array-like architectures (see [23]) - [31]). We shall impose the
constraint of causality resulting from the association of 'time’ with one of

the coordinate axes in Z3 and examine the flow of data through the -

i

architecture in terms of the dependence vectors characterizing the NCN.

4.2.1 ace—Time Representations

d o
Lo

bt dcd dh.

MCNs in Z3 are characterized by 3-dimensional dependence vectors
{di}, which we shall represent by row vectors of lemgth 3. The collection

of all dependence vectors

-
= P ;
forms a pxn matrix, which we shall call the dependence matrix, The S

Clat
o

boundary of the domain T can always be described as a polyhedron. It will
be sufficient for our purposes to comsider only convex polyhedra, and in

fact, only those that can be characterized in terms of the dependence

vectors (see Section 5.4 for a further discussion of this choice).

The interpretation of M(Ns in 23 as space—-time representations of
hardware architectures imposes the additional constraint of causality:
every dependence vector must have s positive time coordinate, since
computation and propagation of data cannot be accomplished in zero time, ..: :
Moreover, since data cannot propagate faster than the speed of

electromagnetic waves in metallic conductors, the directions of dependence

vectors must lie within a certain come, the time-like come in the space—time
continuum. By appropriate scaling of space and time coordinates we can

reduce this condition to the requirement

68

4, 100 11°)1 (4.2)

which means that the third coordinste of d., must be (an integer) larger or

equal to 1. '

The association of time with the third coordinate of dependence vectors
allows us to express the finite ancestry condition in simple form. The
exclusion of ancestors that are infinitely remote from a given vertex in the
domain T is equivalent to the requirement that T be a subspace of the
positive half space of 23, i.e., the half space corresponding to non-
negative time coordinates. Moreover, since hardware must always be finite,
the spatial extent of ' must be bounded. Thus, the only directionm in
which ' may remain unbounded is that of positive time, corresponding to a
computation that continuves indefinitely in time (e.g., & filtering of an
infinite time-series), but produces results (outputs) at regular intervals,

Vertices in I that share the same spatial coordinates are comsidered
as representing the same hardware processor at different instances in time.
Rogularity implies that such isospatial vertices are spread in time at
regular intervals. This interval, which is the same for all processors,
will be called the periodicity index of the architecture. The periodicity
index corresponding to a given dependence matrix D is the smallest

solution n of the equation
Ww=x [0 0 1] (4.3)

where n is any row vector with integer (possibly negative) entries. To
prove this result we notice that %D is an integer combimation of

dependence vectors; moreover, if v(x .tl) and v(xz.yz,tz) are two

'Y
distinct vertices in I', then the vetto: connecting these vertices can
slways be expressed in the form WD for an appropriate (possibly nonumnique)
row vector mw. If the two vertices share the same spatial coordinates, then
their intercommecting vector is colimear with [0 0 1), and so (4.3) is
satisfied for some n,n. Finally, the smallest temporal displacement is
obtained when =n is minimized in (4.3). The periodicity index 5 canm,
actually, be evaluated without an exhaustive search through all possible
integer vectors of n that satisfy (4.3), as is demonstrated in Section
4.2.2,

69

The most important attribute of the space-time representation of a
completely regular MON is the invariance of the MCN under coordinmate
transformations in space—time, This is so because coordinate
transformations do not affect the intercommection pattern of the space-time
representation, and consequently leave the corresponding directed graph
unaltered. In the case of regular space-time representations it is
sufficient to consider the effect of linear coordinate transformations; this

is done in detail in Sections 5 and 6.

4.2.2 Spatial Projection of MONs in z3

The first two coordinates in a three—dimensional space-time can be
interpreted as physical space. When a space~time represeamtation is
projected into the planme formed by the first two coordinates, vertices
represent computing agents (i.e., processors) and arcs represent physical
interconnections (i.e., wires). The projection amounts to the truncation of

oach dependence vector to its first two coordinates, viz.,

1 0
D. t=DJ|0 1 (4.4)
0 0

The truncated dependence matrix D’ ('s’' stands for ’'spatial’) is usmlly
sufficient to characterize the architecture, since we commonly assume that
each dependence vector represents a computation that requires a umnit of

time, and consequently

(4.5)

b oo 0 pub jub

This assumption is violated only when D has a periodicity index n(D) > 1
and, in addition, D contains a dependence vector of the form ([0 O <].

This dependence vector is truncated to [0 O], so <t cannot be recovered
unless T = n or t =1, These, in fact, are the only two possible values

for t as explained in Section 6.4.

70

it

-

noooHA

NCIRICI S e s T R L e e A b M . R AN S T e -t e i v e arib st MER s AECAE /il o avue ui g

?ﬁ':‘ The truncated dependence matrix can be pictorially represented by a
ii 2 conventional block-diagram such as Figure 4-5. Each truncated dependence
LZ,Il vector is represented by an arc with the appropriate spatial displacement,
B . while truncated dependence vectors of the form '[0 0), which correspond

to local memory, are represented by self-arcs.

a. Block-Diagram Representation

1 o 1
D= |-1 D = -1
]
0 0 ~

b. Dependence and Truncated Dependence Matrices

?‘.
4.

Figure 4-5. Example of a Regular Hardware Architecture

- |

dii

el
i

kol

71 —

. R
PE A Y

al

The truncated equivalent of (4.3) becomes

“D' = 0 (4.6) ‘)
[so that every feasible choice of 1w corresponds to an undirected loop in
: the 2-dimensional block-diagram representation. Thus, every feasible n is
F obtained by comsidering all possible loops in the block-diagram B -

representation. If there are no self-loops on vertices, then D. contains

no zero row and (4.5) holds. Consequently, by (4.3),
hl . .
: (o 0 1] =41 1. . .1] ==n

E' so n is obtained by adding up the entries of w. This is, in fact, done
by counting each arc along the loop as 1 if it coincides with the

B Rda
\‘

orientation of the loop and as -1 if it points in the reverse direction,
4 Since the smallest value of n is required, only the shortest loops need to

be considered. We shall show in Section 5.3 that n never exceeds 3 and is

soldom larger thanm 1.

fal

4.3 MODULAR DECOMPOSITION OF MCN MODELS

'
. . ide

The conversion of a given algorithm into an MCN model is based upon the
assumption that the fundamental building blocks-—-the processors——are
implementable in hardware. This is indeed so if each processor represents a
fow scalar operations, which can be handled by any contemporary computing
agent. However, signal processing algoritbms are rarely specified in this -

convenient form; most often they are represented by block-diagrams whose

blocks involve multivariable manipulations, and in particular, matrix
algebra. The construction of a computer program or a hardware
implementation for such MCNs requires to decompose each multichannel
processor into a subnetwork of scalar processors. Omne way to achieve this
decomposition is by storing standard subnetworks for commonly used
operations such as matrix addition, multiplication and inversion in s
1ibrary and invoke this information whenever the need arises. However, the -

experience with signal processing schemes indicates that better results are

72 .

...

obtained by matching the method of decomposition to the structure of the
problem. By a judicious application of the principle of modular

decomposition [32] we obtain completely regular MCNs which are perfectly
suited for implementation im VLSI, and have a much higher throoghput than

e those obtained by mapping matrix operations directly into parallel hardware.
. There is, st present, no simple test to establish the applicability of
_. = the principle of modular decomposition to a given multichannel operation.
When the operation is linear in all its operands the mecessary and
sufficient conditions for modular decomposability cam be stated in simple

n terms as described below.

4.3.1 MNodular Decomposition of Linear Multivariable Filters

Let H(z) be the transfer function of a multivariable filter with an
equal number of inputs and outputs. Suppose that the inputs have been

aggregated into three multichannel iaputs zx, v, u

1’ 2
been respectively aggregated into w, y., y, (Figure 4-6). Thus,
1’ 72

and the outputs have

Yl(z) x(z)
Yz(z) = H(z) ul(z) (4.7)
w(z) nz(z)

Suppose that there exist transfer functions nl(z), ﬂz(z) such that

I) B, (z) 0
H(z) = | P 1 (4.8)
0 Hz(z) 0 Iq

where p is the number of channels in vy and q is the number of channels
in u,. Then the filter can be, clearly, decomposed in the form described
by Figure 4-6. Conversely, if such a decomposition exists, then (4.8) will
hold. Thus, the existence of the factorization (4.8) is a necessary and
sufficient condition for the decomposability of a multivariable filter as
described by Figure 4-6.

R U
PPTEVRY RN

73

3
|
[
&A;;?;

.........

H(2)

v

w

8. Before Decomposition

“l : Hl (2) :j yl

b. After Decomposition

Figure 4-6. MNodular Decomposition of a Linear Multivariable Filter

,
7% 4

IR M i b e S P M > S Sin TR ““!.", S T T T TR A N S T e T

To make the decomposability condition more explicit we sball describe
the transfer functions B‘(z) in terms of blocks, viz.,

Ai(z) Bi(z) :
Bi(z) = R i=1,2 (4.9)
Ci(z) Di(z)

The corresponding decomposition of H(z) yields, via (4.8), (4.9) the

identity
Hll(z) Blz(z) Hls(z) Al(z) Bl(z) 1]
H(z) := nzl(z) ﬂzz(z) ﬂzs(z) = Az(z)cl(z) Az(z)Dl(z) Bz(z)
BSI(z) Bsz(z) 333(2) Cz(z)cl(z) Cz(z)Dz(z) Dz(z)
(4.10)

This means that some elements of Bi(z) can be uniquely determined from

those of the given H(z), for instance
Al(z) = Hll(z). Dz(z) = ﬂss(z). etc,

Since the blocks Bi(z). Ci(z) are square (while Ai' Di need not be

square), we also obtsin, assuming nonsingularity of square transfer
functions

- -1
Az(z) lln(z)c1 (z) (4.110)
which implies
-1
Hn(z)c1 (z)Dl(z) ﬂzz(z) (4.11b)
Similarly
-1
cz(z) = lln(z)c1 (z) (4.12a)

which implies

75

PP I ,ii « - - -
" b e med o

...........

-1
ﬂsl(z)cl (z)Dl(z) = Haz(z) (4.12b)

As a consequence, the eleaents of H(z) cannot be arbitrary. In fact,

-1
nzl(z) sz(z) C1 (z)Dl(:)
=0 (4.132)
Hsl(z) Hsz(z) -1

which means that for all =z

Hzl(z) nzz(z)

rank £

le(z) Baz(z)

where n is the number of chanmels in the signals x, v, w, In fact, if we
insist that square transfer functions are, generically, imvertible, then
Bal(z) is an nxn nonsingular matrix, so that
BZI(z) sz(z)
rank =n (4.13b)
Hél(z) Béz(z)

Conversely, if (4.13b) holds, then
1z (2) = B2 (2)E,, (2) (4.14)
y (2D By (285, .
Choosing Cl(z) arbitrarily we obtain Az(z). Cz(z). Dl(z) via (4.11a),
(4.12a) and (4.14), respectively.
In summary, a necessary and sufficient condition for a decomposition of
the form (4.10) to exist is that the rank condition (4.13b) holds and in

addition

513(1) =0 (4.15)

76

PO P EarY P

.........

Given a transfer function H(z) that satisfies the decomposability
conditions we cam always compute Bl(z). Bz(z).. In fact, we may choose
Cl(z) arbitrarily, and the simplest choice is ucl(z) = I, This yields the

decomposition
I, o 0 By (2) H,(2) o
B(z) = |0 By (2) Hy(2) I B;:(z)l!”(z) o (4.16)
0 By (z) Hy,(2) 0 0 I,
77

hr il (RO) Auary - 4\1_1‘1‘“

« - e

——

T v

78

rA,hL,‘,bwi..P.xH

. SECTION S
CLASSIFICATION OF ARCHITECTURES

b Completely regular MCNs were characterized in the previous section in

_ terms of their dependence vectors. It was also indicated that MCNs with o

iﬁi - different dependence vector: may nevertheless be equivalent, mnamely they ;:
will have equivalent space-time representations. The equivalence of "

S completely regular N(Ns is easy to verify, since it amounts to the existence 8

of a nonsingular linear transformation relating the dependence matrices of

the MONs in consideration. _‘,

The study of equivalence cam be carried out at several different levels ne

of abstraction. At the lowest (most detailed) level each completely regular o

MCN is represented by a dependence matrix

.= P -
D := 14,17, (5.1)

where di are row vectors of length 3 whose first two coordinates represent
the planar space of integrated circuits and the third coordinate represeats ..
time. Thus, for instance, the MCN of Figure 5-1 is characterized by the =

dependence matrix

1 o0 1
p=|o 1 1 _
1 1 1 '

Notice that the time coordinate of all three dependence vectors equals to 1,
reflecting the assumption that each dependence vector represents a
computation that requires a unit of time. This assumption can, of course,
be modified to incorporate computations with unequal processing times.
Notice also that the direction of dependence vectors coincides with that of
the arrows in Figure 5-1, pointing toward the successors of a given

processor, rather than toward the predecessors of the same processor, as im [25].

79 -

Figure 5-1. Example of a Completely Regular MCN

At the intermediate level of abstraction only the spatial coordinates

3 e v

3 of each dependence vector are comsidered. This results in the elimimation
of the third column of the dependence matrix D, resulting in the truncated

dependence matrix D'

1 0

D =10 1
s

1 1

U LTI . mY

for the example of Figure 5-1. Ve shall show in the following section that

the truncated depemdence matrix D‘ provides, in fact, a complete, albeit

; implicit, charscterization of the MCN. This characterization can be
:- transformed in a unique manner into the explicit characterization D, .
: At the highest level of abstraction only the topology of the hardware N
: is considered. This means that the directed graph representing the flow of o
i data is replaced by the corresponding nom-directed graph. Thus, for .
-
{‘_: instance, the MCN of Figure 5-1 and that of Figure 5-2 are topologically %
E:, equivalent, even though the latter has a different dependence matrix, viz. "":.-'_:’
g]
;. 1 0 s
] 4
r D = 0 1 ERaa.
. s S
3 1)
. S
i o
;L 80 4
| S

Figure 5-2, A Completely Regular MCN Which is Topologically Equivalent
to that of Figure 5-1

This section is devoted to the study of topological equivalence
followed by the study of architectural. (Ds) equivalence. The more
complicated topic of space-time equivalence is presented in the following
section, where it is also shown that distinct hardware configurations may,

nevertheless, have equivalent space—time representations,

5.1 TOPOLOGICAL EQUIVALENCE
The topic of topological equivalence has been studied by Niranker and
¥Winkler [25), who have shown that there are only three distinct topologies
(Figure 5-3):
(1) The linear topology, with a single dependence vector,
D =[1 0]

(2) The rectangular topology, with two dependence vectors,

81

P - - A . N . PP S

a. The Linear Topology

)

b. The Rectangular Topology

ANAN

¢. The Hexagonal Topology

Figure 5-3, The Three Fundamental Topologies

82

DI S R AP Sy W

. > T Yy

(3) The hexagonal topology, with three dependence vectors,

1 0
D =j0 1
K s
- 1 1
] Every systolic—array-like architecture can be related by a linear

transformation to one of these fundamental topologies. Also, it is
impossible to have more than three mnon—colinear dependence vectors in a
planar architecture.

The same conclusion can be reached by a graph~theoretic argument. The
graph describing the hardware configuration of a completely regular MCN is
clearly a mosaic, i.e., a2 planar graph in which all faces are bounded the

same number of edges and all vertices (except those on the external boundary
of the graph) have the same number of incident edges. As is well known,
there are only three possible mossics [21]: trisngular, rectangular and
hexagonal. The triangular mosazic has vertices of degree 6 and coincides
with the hexagonal topology. The rectangular mosaic has vertices of degree
'I 4 and coincides with the rectangular topology. The hexagonal mosaic (Figure
5-4) does not correspond to a completely regular MCN, since it requires two
sets of dependence vectors rather than one. However, it can be rearranged
by combining pairs of adjacent processors into a single processor (Figure 5-

ll 4b), so that the resulting configuration has a rectangular topology. Thus,

there are only two mosaics corresponding to completely regular MCNs, which
=3 combined with the linear configuration makes a total of 3 fundamental e

topologies.

o
J

el ndh, SR WU WP R WG I W TP e 4 Py T PG Gy G AP T S

a. The Mosaic

b. Rearrangement as a Rectangular Topology

Figure 5-4., The Hexagomal Mossic

84 Y

————r————— e—————

1 i
L 5.2 ARCHITECTURAL EQUIVALENCE
lli Each of the intercomnecting wires in the three fundawental topologies ;Tfj
! can be associasted with two direction vectors, one pointing along the wire in f}};
: - one way, the other in the reverse. This makes a total of three 2;1i
Z. possibilities for each interconnecting wire: (i) + 4, (ii) -d, and ;;;3
h ;| (iii) + d. This means that the linear topology results in 31 =3 L
architectures, the rectangular topology in 32 = 9 architectures and the .: }
hexagonal topology in 33 = 27 architectures. Since many of these K %
? B architectures are equivalent, a classification of the distinct architectures -i;j
is provided in Table 3-1. The nomenclature consists of a capital letter b *
(L, R or H) indicating the topology (linear, rectangular or hexagonal), a .
[digit indicating the number of dependence vectors and a lower case letter, 'f
s whenever required, to distinguish between architectures which have the same]
i r topology and the same number of dependence vectors but are not equivalent, :-H
e.8.,» H3a and H3b. The table lists all equivalent configurations in a -
single row,

5.3 PERIODICITY ANALYSIS AND THROUGHPUT

The occurrence of cycles (i.e., closed loops of directed arcs) im the

directed graph representing a hardware architecture provides important

.
0 L

information about the throughput rate of the architecture. In this

subsection we analyze this information and identify the configurations with J
low throughput. ’ ’ .i

The periodicity index n of architectures has been defined in Section ;.";
4.2, It can be computed either by examining undirected loops in the graph i _4
reprosenting the architecture or by solving the equation 37:ﬂ

nD' =0 (5.2) s

for every possible row vector n with integer elements, and summing the

elements of n. The periodicity index n equals the smallest of these

85

R4

l———o
R3 ‘T

RN

TABLE 5-1. CLASSIFICATION OF HARDWARE ARCHITECTURES
5 Pair) Pair 2 Pair 3
A L1 — -
k L2 -——————p
]
g
‘R2

H3a

H3b

Héa

HS

Hé

N
N~
w
N

AT
YL N o B

x Pl

. .
b B PP

sums. If no solution n exists, =n 1is dofined to be 1. Following this
technique we conclude that L1, R2 have no solution and have a unit

periodicity index, while other architectures have solutions, as follows:

-?:jz (i) L2 has n=([1 1]; bhence n = 2.
h f (i) R3 has n=[110); hence n =2,
N (1) R4 has n=101100], (001 1]; hence = = 2.

(iv) H3a has 17

[11-1); hence n =1,

(v) H3b has n =[111); bence n = 3.

(vi) B4a has 1q

[11-10],[0011), [1101); hence xn =1.

(vii) B4d has ¢

[1-101], [0011]; hence n =1,

(viii) HS has n=(1010-1], {(11000], [00110]); hence

n=1,

(ix) B6 bas n=11010-10],[210000], [001100],
{000011]; hence n =1,

In the sequel we shall measure the throughputs of architectures
relative to the throughput of the linear architecture L1 (s classical
pipeline). Since the time interval between two successive applications of
input equals the periodicity index, the relative throughput of a given
architecture is given by the formula

1
periodicity index

relative throughput = (5.3)

Thus, the relative throughput of L2, R3, R4 is 1/2 and that of H3d is o
O
1/3. o

87

5.4 BOUNDARY ANALYSIS

No assumption has been made up to this point adbout the shape of the
boundary of a given hardware architecture, However, since the shape of the
boundary is changed by linear transformation it has to be taken into
consideration in the process of classifying architectures. As an example
consider the 6 equivalent configurations denoted by H3a (Table 5-1). The

truncated dependence matrices of the first and third of these configurations
Ef are related by a linear transformation, viz.
‘l 1 1 1 0 1 1
s 0 1| =11 1]i}-1 o©
- -1 0 0 1

Now assume that the first configuration has a rectangular boundary, which
can be characterized by boundary matrix

consisting of all dependence vectors colinear with the boundary. The linear

transformation maps this boundary iato

which characterizes a parallelogram rather than a rectangle. Thus, the
first H3s configuration with a rectangular boundary is equivalent to the
third H3a configuration with a parallelogram boundary. It is mot
equivalent, however, to the third H3a configuretion with a rectangular
boundary. Clearly, we need to reclassify the entries of Table 5-1 according
to both the dependence matrix and the boundary.

Wo shall be concerned only with boundaries that satisfy the two
following conditions:

(1) The boundary curve is a closed convex polygon

(1i) Each segment of the boundary curve is colinear with some

dependence vector.

. Thus, the only possible directions for the gegments of the boundary curve
f;-?; are [1 0], [0 1] and [1 1]1. Consequently, there are four possible

[" boundary curves (Figure 5-5): rectangle, parallelogram, lower triamgle,

- [} upper triangle, Of these, only the rectangle—shape boundary can be applied
k to the linear (1) and rectangular (R) architectures. On the other hand, all
four possible boundaries can be combined with hexagonal (H) architectures.

However, since linear transformations map rectangles into parallelograms and

lower triangles into upper ones, we need only consider the comwbination of
each hexagonal entry of Table 5-1 with either a rectangular or s triangular

toundary.

_a

R

.
dsshndh

89

) -iJ

v~y >

a. Rectangle

b, Parallelogram

c. Lower Triangle d. Uppexr Triangle

Figure 5-5. Fundamental Boundary Curves

aa A S m s

Dt et

T T
f
1=
|
1 el

g
4) © © n w @ © WO w © © m ww

", - - o

m o - oo © = - O - w = - o O e o™

3 l (- 1 i

:

L

v 8
A
f RS O O w m Q w = .m. m..r © © - .ﬂ
”.. mm 2 - O = - O v o= = - = O v w
g -1 i i ! 1
p

FB © ™ © w w © © w v 9w

Oﬂ o i L4 ! -

° 2 2 2 5
, Ou - © o O o oS O =

,, 3
Ia
- g~ o o @ © m w a © w m o
| “a 9) s '

: Am - - O w = - O O =™ 1
i g \ |]
; N :
. s ° 9 © w w 9 © w W 9w u

m] oL 1]
g | & &
- - O - - O - - |
- ! .
.Y

Cli L ieat ity — ———— " > — P - - v YT T, v, vy

. il
With rectangular boundaries we need to consider matrices of the form Aﬁ
P Py e
= (5.4) R
B‘j) § g ‘
Clearly L
- ® .
D‘ -D' -Ds :‘ vé
. (=1) = ~ : S
I -1 1 ;
which shows that the reversal of all dependence vectors does not produce a . » !
new configuration. The 6 entries in each one of the rows H3a, H4a, B4d, HS
of Table 5-1 can, therefoce, be considered as 3 pairs of conjugate
configurations. Of these, the second and third pair are still equivalent — i
when combined with rectangular boundaries, but the first pair is different. Pﬂ_,@
Thus, the entries of Table 5-1, when combined with rectangular boundaries, f;ffj%
can be reclassified as in Table 5~2. This time each architecture is DR
specified by its Ds matrix rather than by a pictorial description as in — B
Table 5-1. | -
Similarly, we can combine each hexagonal entry of Table 5-1 with :_; ;
lower triangular boundary. This will again produce two distinct R
architectures for each ome of the rows H3a, HB4a, H4b, H5. However, there I {
is no need to do it explicitly, since the resulting configurations can - ;—“~1
always be obtained by ‘cutting’ the appropriate hexagonal topology combined
with a rectangular boundary along the main diagonal, Thus, it will be
sufficient to focus in the sequel upon rectangular boundaries alone. :
»
5.5 SUMMARY
Systolic-array-like architectures have been classified by topology, .f““
interconnection pattern and shape of boundary. We have shown that there are ;',i
only 15 distinct (non—equivalent) architectures (see Table 5-2). We have ‘fi
also shown that it is sufficient to consider only rectangular boundaries o
- D
which are of practical importance in the process of VLSI layout, -
92 i

A genealogical chart (Figure 5-6) shows which architectures are

contained in any given architecture. In particular, it shows that H6 is
the ‘universal architecture’' for systolic arrays, containing every possible

architecture with a smaller number of dependence vectors.

Figure 5-6. Genealogical Chart for Architectures

93

AT P M g et A L, P MR e T U AiaBaschan e San Bon. doa aoe T e -, -

AD-A146 930 ANALYSIS AND DESIGN METHODOLOGY FOR VLSI COMPUTING 2/2
NETWORKS(U) INTEGRATED SYSTEMS INC PALO ALTO CA
H LEV-ARI AUG 84 ISI-46 NBOB14-83-C-0377

UNCLASSIFIED F/G 9/2

-~ LB M s i e P A ek S B M sl
: L . T LA Y DR S T

.'f"";\;‘:‘.*t-.'_;;..:_;:i."--‘--—'-;'»-‘-\-ﬁ-»" BENER ISR AR AR a8 ~ . S A ey "\7
o -

2

et
22 s s

FEEFEEE R

EEEE

FEEF

oo

— . -
Dt}

Ll

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-1963-A .

O
E‘,i_ B

L
B
S
-

-
R

AU,

e
ey
\\'*_ 1

SECTION 6
ICATION OF SPACE-TINE ENTATIONS

3 The space-time representation of a completely regular NON was
f characterized in the previous section by the dependence matrix D. The

hardware configuration was obtasined by focusing upon the spatial coordﬂnates
of the dependence vectors, which resulted in the truncated dependsnce matrix
D‘. It was observed that the temporal coordinmate of all the architectures

described in Section 5 was always equal to 1, viz.,

[

(6.1)

b oo

so that the dependence matrix D can be easily recomstructed for any given
D‘ via (6.1). The properties of the corresponding space~time diagram can
then be deduced by analysis of the dependence matrix D,

6.1 THE FUNDAMENTAL SPACE-TIME CONFIGURATIONS

Each of the fundamental 11 architectures of Table 5-2 determines a

fundamental space-time configuration., We shall focus our attention upon the
dependence matrix alome, without considering, for the present, the shape of -
the boundary surface. Thus, equivalence between the fundamental space-time :
configurations is established by relating the corresponding dependence 'fj

matrices by linear transformations. A simple analysis (see Appendix F) . i

shows that every dependence matrix with 2 vectors can be transformed imto =
the equivalent (canomical) form)
1 00]
D(2) -
0 1 0 ”ff
PREVIOUS PAGE g -
1S BLANK !
95 o

and every dependence matrix with 3 vectors can be transformed into the

equivalent form

1 0 0
p3 = lo 1 o
0 0 1

Consequently, L2 ~ R2 and R3 ~ H3a ~ H3b where the tilde (~) denotes
equivalence. For dependence matrices with more than 3 vectors it is
convenient to establish first a (nonunique) canomical equivalent, i.e., an
equivalent dependence matrix whose first three rows are the identity matrix,

viz.,

- eem e e e

Some canonical-form equivalents are listed in Table 6-1., The full list of
canonical equivalents will be discussed in later sections in conjunction
with the specification of boundary surfaces in the three—dimensional space-

time continoum.

6.2 ARCHITECTURES WITH LOCAL MEMORY

The preceding analysis was based upon the assumption that processors
transmit the results of computations to their immediate neighbors and never
store them for further use. However, many applications do involve such
storsge; this is true, in particular, for adaptive system/parameter
identification algorithms that store the identified parameters in fixed
location within the array and use the signals that flow through each
processor to time—update the locally stored parameters. In this section we
consider the architectures obtained by providing each processor with a local

memory.

96

- . . -]

- ?-‘~-<

TABLE 6-1. CANONICAL FORM BEQUIVALENTS FOR FUNDAMENTAL ARCRITECTURES

L L2,R2 R3,H3s,H30 R4
1 0 0 1 0 1 0 1 0
1 0 0 1 O o 1 o
0 1 o 0 1
1 -1 1

Béa H4d s B6
1 0 o 1 o o 1 o0 O 1 0 O
0 1 o 1 0 0o 1 0 0 1 0
o 0 1 o o0 1 0o 0 1 0 o0 1
3/2-1 1/2{-1/2 1 1/2|-1/2 1 1/2|~1/2 1 1/2
3/2 -1 1/2

97

Topologically, local memory means the addition of a self-loop to each
. processor (Figure 6-1). The direction of each interconnecting link can

_ still be chosen in 3 distinct ways, as explained in Section 5.2, resulting
f in 11 new architectures (Table 6-2). Two important observations have to be

made regarding this table:

(i) The number of dependence vectors is larger by ome than the number
of interconnections. Thus, for instance, RM3 has 4 direction

vectors, not 3,

(ii) The length of the last dependence vector, corresponding to the
local memory, equals the temporal displacement between two
consecutive occurrences of the same processor in the space-time
configuration. Thus, in general, this displacement is 1, except
for L2, R3, R4 whose temporal displacement is 2 (corresponding to
a periodicity index of 2), and except for H3b whose temporal
displacement is 3 (corresponding to a periodicity index of 3).

Local memory can also be used to interleave computations and achieve

increased throughput with architectures whose relative throughput without

memory is less than 1. This possidbility will be discussed im Section 6.4.
Analysis of equivalence between space—time configurationms witk local

memory reveals that:

(1) LM1, which has 2 linearly independent dependence vectors, is
equivalent to L2, R2.

(i1) RM2, which has 3 linearly independent dependence vectors is
equivalent to R3, H3a, H3b.

(ii1) HM3a, which has 4 dependence vectors, is equivalent to R4. ;_;‘

In all three cases we can trade intercommecting links for memory, thereby "ifﬂ;

o
Py)

-4

)
et

98 _§_

r

-

b.

Figure 6-1,

o>
>
o

The Linear Topology with Memory (LM)

(1]

The Rectangular Topology with Memory (RN)

O—Cp

The Hexagonal Topology with Memory (EN)

The Three Fundamental Topologies with Local Memory

e |

a

bS]
non
=
& L L L L .
o
m n OOI.ﬂlcﬂo
- ™ o™ e N
w) 14.0014.0
E m 001.u0
" 1-...000 I T T T
m w 001410
o = = N
ﬂ . 14.0010
m u O O = ©
= - 4 © O e e e e
8 | o
-] m © m W m o o
™ v - ! ! S
m "o mea o -
m m Q =W O
m - -) - - e oo -
A
ﬁ n Oll.ﬂo
- oo
B "o nmo
g § |oow
- - O - ™ o™ oo
m i D
w © ™ w O
[<] - - [}
m - O wm O
-4 [] 4
3 |e° i
[]
) - O L L .
© -
(o]
w m © ™ ™ ©
AA
m - © w ©
T AL

‘f

reducing the number of physical wires required to construct a realizationm of
the architecture and simplifying the layout problem for VLSI implementation.
Thus, for instance, the R2 architecture which requires a plamar metwork of
processors with 4 interconnecting ports at each processor can be replaced by
LNM1 which requires & linear network of processors with 2 intercommecting
ports at each processor and a local memory. Even more remarkably, the same
replacement also trades low throughput configurations for high throughput

ones,

6.3 BOUNDARY ANALYSIS

The relation between boundary shapes and equivalence between (planar)
architectures has been examined in Section 5.4 The combination of topology
and boundary has produced 15 distinct architectures which were summarized in
Table 5-2. Since each one of these architectures has a rectangular
boundary, the resulting space-time configuration always occupies &
rectangular prism (with the exception of low-dimensional architectures such
as L1, [2, R2 vhose space—time configurations occupy 1 or 2-dimensional
subspaces).

Since linear transformations change the shape of the boundary, the
equivalence between space-time configuration, discussed in Sections 6.1 -
6.2, has to be reexamined to include the effects of boundary
transformations., It will be sufficient to carry out this anslysis only for
collections of space-time configurations which have been declared as

equivalent in the preceding sectionms,

6.3.1 The Configuratiops JIMI, [2, K2

The configurations LM1, R2 can be considered equivalent omnly when we
assume that a single set of inputs is applied to R2 (rather than a time-

series). In this case R2 is characterized by

[]

]

!

1
'

101

R ovats g) T —

while LM1 1is characterized by

1 01
Pl .o 0.1
i 01
B 0 0 1
| and the two are equivalent, being related by a linear transformation, viz.,

[1 0 1] 21 o] . '[1 0 1]
0 0 1 0 1 1 0 1 1
On the other hand, LMl and R2 are mnot egquivalent to L2 for which

-
=

n

|

1

1

!
RN

The D-part of this characterization can be related to the D-part of LM1,

[101] 322_[101]
o0 1|5 o ; -1 01

i where the asterisks denmote entries which can be chosen arbitrarily (subject

viz.,

e\ &

to the nonsingularity constraint of the linear transformation). However,
when the dependence matrix is combined with the boundary matrix we obtain

which does mot match the B-part of 12. When the inverse of this
tzansformation is applied to the dependence and boundary matrices of L2,

T WSO L

viz.,

/2 0 O

|
[

'l‘H'HH
o
[
(-]
"
!
!
1
1
|
1
Pub Gk Pub pd

/2 0 1

.

- o
L

v
[
!

time

space

Figure 6-2.

Transformed L2 Configuration

103

s

the resulting configuration (Figure 6-~2) is equivalent to an LMl
configuration of infinite order; the finite active part of the architecture
is shifted one cell to the right every time a new input is applied. Thus,
in summary, LM1 and R2 are equivalent to each other dut not to L2,

6.3.2 The Configurations RM2, R3, H3a, H3b

The truncated boundary matrix of these configurations was chosen in
Section 5.4 as

s - [0]

namely, the rectangular boundary. The corresponding boundary surface in the

space—time continuum is, therefore, characterized by the boundary matrix

(6.1)

-}

[
OO M
O+ O
-

When this boundary matrix is combined with the dependence matrices of RN2,
R3, H3aa, H3asf, H3b, equivalence is destroyed. For instance, trying to
relate H3aa to RM2 we obtain

1 0 1 1 0 1
) 0-1 0 0 11 0-1 0 011
11 1 10 1

. l-12 0 of =]-2-1.1 -1 0 of=~ }J-1-0.1
B 11 1 101 11 1 101
Baa 01 1 01 1
0 0 1 111

The resulting D-part coincides with the dependence matrix of RM2, but the
boundary surface is different. The configuration obtained above by
transforming H3aa is in fact an RM2 hardware of infinite order in which
a finite active segment shifts along the diagonal by one cell each time &
set of inputs is applied to the array. This is, in fact, precisely what
bappens in systolic arrays for matrix multiplication. The configuration
H3aa (of Weiser and Davis [4)) is suited for multiplying banded matrices.
VWhen the same problem is implemented on an RM2 configuration (of S.Y. Kung

{7]) most cells in the array sre idle while & small active rectangle,

104

...

_5 corresponding to the bandwidth of the given matrices, shifts along the main
} diagonal of the array. In analogy, while multiplying two matrices with no
'l structure is carried out efficiently by an RM2 array, solving the same

' problem on an H3a configuration involves many idle cells and a small

- active segment that shifts along the main diagonal,

6.3.3 e Configurations 8
lf These configurations have the same boundary matrix, givem by (6.1), as
» RM2, R3, H3a and H3b. Since their dependence matrices are different, we
- conclude that HM3aa, HM3aB, R4 are distinct configurations when the shape

of boundary surface is taken into account.

n.

6.3.4 Summary

When boundary considerations are takem into account each of the 15
architectures of Table 5-2 is distinct and cammot be relsted by equivalence
to any other architecture in this table. Imcorporating local memory results

in doubling the total number of distinct configurations to 30.

6.4 INTERLEAVING ARCHITECTURES BY LOCAL NEMORY

The introduction of local memory in Section 6.2 involved the assumption
that locally stored data remajn in memory until required, which makes
particular sense in data driven realization, Consequently, the durationm of
storage for some architectures (L2, R3, R4, H3D) was longer than one time
unit. This fact can be used to construct mew architectures with higher
throughput, by interleaving computations in time and connecting the
interleaved computations via the local memory.

The simplest example of such comstruction is the architecture L2.
VWithout interleaving the-throughput of L2, LM2 is 1/2 (Figure 6-3a).
With jinterleaving, which involves superimposing in time two L2 schemes and

interconnecting them via local memory, the resulting LiM2 configuration

105 o

space

time

2., Without Interleaving (LM2)

b. VWith Interleaviag (Lid2)

Figure 6-3. Interleaving via Local MNemory

106 o

(Figure 6-3b) has throughput = 1, A similar spproach produces the
architectures RiM3, RiM4 and HiM3b, whose characterizations are given in
Table 6-3. The difference between these architectures and their
noninterleaved ;onnterptrts is the shortening of the local memory dependence
vector from either [0 O 2] or [0 0 3] to [0 O 1].

TABLE 6-3. DEPENDENCE MATRICES FOR INTERLEAVED ARCHITECTURES

Lim2 RiN3 Rid4A BiN3db
1 1 0 1 1 01 1 01
-1 -1 0 1 ~1 1 11
0 0 011 011 -1 -1 1
0 0 1 0-1 1 0 0 1

0 0 1

6.5 SUMMARY

Space-time configurations have been classified by topology,
interconnection pattern, shape of boundary, existence of local memory and
interleaving. The 15 fundamental architectures of Table 5-2 give rise to
another 15 confi;nrutiois involving local memory. These, in turn, give rise
to 4 interleaved configurations, producing a total of 34 distinct space-time

configurations,

107

VP S S denbondondendosniuiondosdatdnsednn o dion Sot sk PP WP PO T DA U WP YN W L

1 Ignoring the shape of the boundary surface results in 20 distinct
configurastions:

1) 11 11) Bd4aa, H4ap
2) 1M1, L2, R2 : 12) B4ba, B4bP
k 3) L2 | 13) RM

4) Lim2 14) RiM4

T 5) RM2, R3, H3aa, H3ap, H3d 15) HM4ac, HM4ap

6) RM3 16) HM4ba, HM4LP RS
7) RiM3 - 17) HSa, HSP

8) HM3aa, HM3af, R4 18) HMSa, HMSB

9) HM3b | 19) H6 -
10) HiM3b 20) HM6

Ignoring, in addition, the details of local memory (and, consequently, of o
interleaving) results in 8 distinct configurations only as in Table 6-1. - mkfj

-— o,

Choosing the optimsl configuration for a givem computational scheme

requires a specification of both the interconnection pattern and the

2.

boundary shape. This can be accomplished only when specific details of the

corresponding computational scheme are taken into account (e.g., bandedness . .,_;

-

of matrices to be multiplied). When only partial information is considered

PO

the designer is often able to choose ‘the interconmection pattern but not the

s
4

boundary. Thus, multiplication of two matrices can be implemented in any of
the five equivalent bardware configurations RM2 {7], R3 [10], B3aa [4],
H3ap, H3b [5]. However, RM2 will be optimal if both matrices have no
particular structure; R3 will be optimel if only one of the matrices is
banded; and H3aa (or H3aP) will be optimal if both matrices are banded.
It is an historical curiosity that the first systolic array for matrix <

-,,..,...

ac

multiplication, H3b, is never optimal, because it has relative throughput
of 1/3 and is otherwise equivalent to H3a.

108

— e

SECTION 7
CONQ USIBNS

A modeling and analysis nethodoloiy for parsllel algorithms and
architectures has been presented. Modular computing networks (MCNs) were
introduced as s unifying congept that eas be used t& describe both
algorithms apd architectures. The rerresentation of an MCN exhibits all the
relevant information that characterizes a parsallel jrocessing algorithm,
from precedence relations and order of execution, through scheduling and
pipelinability consideration, to map compositions and global
tharacterization. It clearly displays the hierarchical structure of a
pasrallel system and the multiplicity of choices for hardware implementation.
Our methodology applies both to u;bitrtty (irregular) networks aad to
iterative ones. Regularity of networks translates directly into regularity
of the model we use to describe them and, consequently, into regularity of
the associated architectures. Problems of non—executability (deadlocks,
safeness, etc.) are insignificant in our methodology 2nd can be easily
detected and resolved.

Infinite M(ONs, which occur in most signal processing applications, have
been characterized. It has been shown thst the key property for
executability of such networks is structural finiteness (in additiom to
absence of cycles, of course)., Infinite MCNs are most frequently iterative,
in which case they are guaranteed to be structurally finite and can be
represented by a finite single-layer diagram.

Dimensionality, pipelinability and throughput have been introduced as
fundamental structural attribntes of MCN models. Throughput computations
(see, e.g., [9]1) have been established as a direct consequence of the motiom
of schedule, which applies to every MCN model. The wavefront concept
[4,7,8] has been shown to be a natural outcome of associating schedules with
iterative networks., Systolic—array—-like architectures were modeled and

analyzed via the concept of completely regular MONs,

109

]
-
P

»
——nt
LI
o loe
| B
C 1

S
| -
b _
| DU

A classification of canonical realizations for completely regular
modular computing networks has been presented. Three levels of abstraction
were considered: topology, architecture and space-time representation. The
analysis revealed 3 canonical topologies, 15 canonical architectures and 34
canonical space-time configurations. It was shown that the unigue canmonical
counterpart of any given topology, architecture or space-time configuration
is obtained via a simple (and unique) transformation of the correspondii;
dependence and boundary matrices. It was also shown that only rectangular

boundaries are required to implement any canonical realization. While

ignoring boundary details allows so-e.flexibility of design, it also results

in inefficient implementations, as explained in Section 6.5.

It is interesting to observe that only a small fraction of the
architectures described in this memo have actually been used in the design
of p-inllel algorithms, The most commonly encountered nrchifoctnres are the
linear onos (L2, L1M) which are used for linmear filtering (= coamvolutionm,
polynomial multiplication) and related computations. Next comes the
rectangular architectnre RM2 and its equivalents——R3, H3a, H3b—which are
used in matrix products, matrix triangulirizations, solutions of linear
equations, QR-factorizations for eigenvalue problems, and adaptive
multichannel least-squares slgorithms. Thus, all applications involved, to
date, only architectures with 3 dependence vectors or less. Notice also
that the classical pipeline (L1) has no use as a signal processing

architecture,

110

[EN

r

SECTION 8
TECHNICAL FYBLICATIONS

The following technical papers have been written under contract number
N00014-83-C-0377.

1. H. Lev-Ari, 'Modular Computing Networks: A New Methodology for Analysis
and Design of Parallel Algorithms/Architectures,’ ISI Techmnical Memo,
ISI-29. '

2. S.Y. Kung, 'On Supercomputing wit’. Systolic/Wavefront Array Processors,’
Special Issue on Supercomputing, JEEE Proc., July 1984.

3. H. Lev-Ari, ’Canonical Realizations of Completely Regular Modular
Computing Networks,' ISI Technical Memo, ISI-41.

4, BH. Lev-Ari, 'A New Methodology for Representation and Anmalysis of
Parallel Algorithms and Architectares,’ in preparation.

111

-———

L o s,

(1]

(2]

(3]

[4]

[(s]

(6]

{71

(8]

(9]

(10]

(11])
(12}

[13]

(14]

REFERENCES

J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice
Hall, 1981.

S.Y. Foo and G, Musgrave, ’'Comparison of Graph Models for Parallel

Computation and Their Extension,’ 1975 International Symposium inm
CHDLs and Their Applications, pp. 16-21.

S.L. Johnson and D. Cohen, ‘A Mathematical Approach to Nodeling the
Flow of Data and Control in Computational Networks,’' in H.T. Kung, et

al, (eds.), YLSI Systems and Computations, Computer Science Press,
1981,

U. Weiser and A. Davis, 'A Wavefront Notatiom Tool for VLSI Array
Design,’ in H.T. Kung, et al., ibid.

B.T. Kung, ‘Why Systolic Architectures?,’ IEEE Computer, pp. 37-46,
January 1982.

M.C. Chen and C.A. Mead, 'Concurrent Algorithms as Space-Time
Recursion Equations,’ in S.Y, Kung, et al. (eds.), Nodern Signal
Processing and VLSI, Prentice Hall, 1984,

S.Y. Kung, et al., ‘VWavefront Array Processor: Language, Architecture
and Applications,’ IEEE Trans, Comp., Vol. C-31, pp. 1054-1066, Nov.
1982.

S.Y. Kung, ‘VLSI Array Processors for Signal Processing,’ Proceedings
of Arab Summer School in Moderm Signal Processing, Auvg. 1983,

H.V. Jagadish, T. Kailath, J.A. Newkirk, and R.G. Mathews, ’'Pipelining

in Systolic Arrays,’ submitted to the Seventeepth Asilomar Conferenmce
on Circuits and Systems, Pacific Grove, 1983.

S.K. Rao and T. Kailath, °‘VLSI and the Digital Filtering Problem,’
submitted to MIT Conference onm Advanced Research in VLSJI, 1983,

A.A. Markov, 'The Theory of Algorithms,’ e a 0c n

F. Hennie, Introduction to Computability, Ch. 1, Addison-Wesley, 1977.

A.V. Abo, J.E. Hopcroft, and J.D. Ullman, Da t nd
Algorithms, Ch, 1, Addison—VWesley.

D.F. Robinson and L.R. Foulds, : eo, n o8,
Gordon and Breach, 1980.

PREVIOUS PAGE
1S BLANK

113

=

[P

-—

oA o a

a

. y
LA.LA"

s g

P

¥
|
o\

[15]

(16]

(17}

[18]

[19])

(20]

(21]

[22]

[23]

[24)

[25)

[26]

[27]

(28]

[29]

(30])

[31)

C. Berge, e eory of Graphs and Its lications, Methuen, London,
1964.

C.L. Seitz, ’'System Timing,’ in C.A. Mead and L. Conway, Introduction
to VLSI Systems, Addison-Wesley, 1980.

Y. Malachi and S.S. Owicki, 'Temporal Specifications of Self-Timed
Systems,’ in H.T. Kung, et al., ibid.

J.B. Dennis, 'Data-Flow Supercomputers,’ IEEE Computer, pp. 48-56,
Nov. 1980.

W.W. Wadge, 'An Extensional Treatment of Dataflow Deadlock.’

F. Commoner, A.¥W. Holt, S. Even, and A, Pnueli, ’'Marked Directed
Graphs, '’ Com st ci., Vol. 5, pp. 511-523, 1971.

0. Ore, Graphs and Their Uses, Math. Assoc. of America, Yale, 1963.

P. LaGuernic, A. Beneveniste, and T. Gautier, ’'Signal: Un Langage
pour le Traitement du Signal,’ IRISA Research Report No. 206, May
1983.

J.P. Roth and L.S. Levy, 'Equivalence of Hardware and Software,’
Research Report RC 9464, IBM Watson Center, Yorktown Heights, NY, May
1982.

M.C. Chen and C.A. Mead, 'Concurrent Algorithms as Space-Time
Recursion Equations,’ in S.Y. Kung, et al. (eds.), Modern Signal

Processing and VLSI, Prentice Hall, 1984,

W.L. Miranker and A. VWinkler, ’'Spacetime Representations of Systolic
Computational Structures,’ IBM Research Report RC 9775, Dec. 1982,

P.R. Cappello and K. Steiglitz, 'Unifying VLSI Array Design with
Linear Transformations in Space-Time,’ Technical Report TRCS 83-03,
University of California, Santa Barbara, Dec. 1983.

D.I. Moldovan, ‘On the Design of Algorithms for VLSI Systolic
Arrays,' Proceedings of the IEFEE, Vol. 71, pp. 113-120, Jan. 1983.

P. Quinton, 'The Systematic Design of Systolic Arrays,’ IRISA Report
No. 193, France, Apr. 1983.

H. Lev-Ari, ’'Modular Computing Networks: A New Methodology for
Analysis and Design of Parallel Algorithms/Architectures,’ ISI
Technical Memo, ISI-29, Dec. 1983,

B. Lisper, ’'Description and Synthesis of Systolic Arrays,’ The Royasl
Institute of Technology Report TRITA-NA-8318, Stockholm, Sweden, 1983,

C.J. Kuo, B.C. Levy, B.R. Musicus, ’'The Specification and Verification

of Systolic Wave Algorithms,’ MIT Report LIDS-P-1368, Cambridge, MA,
March 1984.

114

{32] H. Lev-Ari, ‘Modular Architectures for Adaptive Multichannel Lattice

Algorithms,’ Proc, 1983 IEEE, Int, Conf, on ASSP, pp. 455-458, Apr.
1983,

[-

3
O
N
1

K
9
o
B

115

ng - T T g w ———
EME e i A L 8 " v S R “ N Y W T Y Y T w w—w, W

APPENDIX A
PROOF OF THEO 2_FOR_INFINITE $

If the MCN has an execntion then it must be acyclic, as was pointed out
at the beginning of Section 2.3. To prove the converse we shall comstruct
an execution for an arbitrary acyclic, structurally-finite MCN,

First, notice that, by Theorem 2.1, the inputs of the MCN can be
numbered. Let us, therefore, demote the inputs by (zi; 0 (1 ¢}, Next,
recursively define a sequence of sets of variables {ui} according to the

following rule:
llo 1= {zol

M = (Ao(li)’ z.. }

i+l 1

Thus, each set contains one new inputs of the MCN and all the immediate
successors of the preceding set. The sets li are clearly disjoint, and,
in view of the local-finitemess property, each li set is finite,

Moreover, every variable of the MIN is included in some li set, because
every variable is either a glodbal input or a finite successor of some global

input. Thus, the cascade

®
lo . ll “2 * ...

is, in fact, a representation of the network as a cascade of finite

(disjoint) subnetworks. Each .i set is finite, hence has an execution ;“
with a finite number of levels. If we roplace ecach li by its execution, ;1
we obtain a refinement of the previous representationm, viz,, -
7

. . .

soo 801 . LR] L slo 811 * sese L4 ss e _.__1
Lot -1

GE o o
PREVIOUENS _ 1

117

——

where (s‘) are the levels corresponding to the set M,. Since each §

J i ij
is finite, this is clearly an execution of the global MCN.

Bl J

Bsbrl 'tk

118 B

APPENDIX B
ADMISSIBLE ARCHITECTURES

A composition of processors is called admissible if the following three

conditions are satisfied:
(i) There are no dangling inputs or outputs,
(i) There are no directed cycles.
(iii) The architecture is structurally fimite,

Each of the processors comprising anm architecture car itself be &
composition of more elementary processors. The hierarchical nature of the

admissibility property implies the following result.

sorem

An adwissible composition of admissible architectures is itself an
sdmissible architecture.

zloog H

The theorem states that the three properties making up admissibility
should be exhibited by the composite architecture, if they were exhibited by

each of the subnetworks.

(1) The composite architecture has 8o dangling terminals, because
every terminal is connected to some subnetwork (by admissidbility
of the composition) and mo subnetwork has dangling termimals (by
admissibility of the subnetworks).

(11) The composite architecture has mo cycles because neither the
subnetwork mor the composition has cycles.

119

(i11)

Structural finiteness is made np of the three following
properties: Local finiteness, finite ancestries, and
countability of connected compoments. Local finiteness is
inherited by the composite architecture because composition does
not change the number of inputs/outputs of processors within
each subnetwork, To prove that the fimite ancestry property is
also inherited by the composite architecture it will be
sufficient to consider a single varisble 3x. Suppose that =x
belongs to some subnetwork ¢.. By the admissibility of the
composition, G4 has a fipite number of ancestor subaetworks.
The ancestry of x is obtained by tracimg back the ancestry
relation through the finite collection of submetworks a(¥%,).
And since each subnetwork is admissidble, the portion of atx)
within each ancestor of «, is also finmite, hence a(x) itself
is finite. Finally, an admissible composition has a countable
number of subnetworks (see Theorem 2.1) and each subnetwork has,
by assumption, s countable number of compected compopents.
Hence, the total number of comnected compoments in the composite
network is countable, too.

120

P ;
PRSP PO S S S |

E

)
.

D ——— e e -

APPENDIX C
0 EOREM
MINX CUTIONS OF FINITE s

Every execution determines a numbering E() of the variables of an
MON, viz.,

z e si {(—> E(x) = 1
This integer valued function satisfies the inequality (see Sectiom 3.1)

E(x) ~ 1) max (E(y); y ¢ a(x)] (Cc.1)
y

Every finite directed acyclic graph has & unique numbering ﬁ() of its
arcs (or equivalently of its vertices) that satisfies the equality

£(x) - 1 = max [ﬁ(y); y & a(x)} (C.2)
y

This well-known result (see, e¢.g., [14]) implies that every finite
executable MCN has & unique eoxecution that satisfies (C.2). We shall call
this lﬁiquo execution minimal for reasons that will become clear in the
segmel.

Let E() be an ardbitrary non-minimal execution. Then, there exists
some variable x for which the strict imequality

E(x) - 1) max (E(y): y ¢ a(x)]
y

holds. This means that x is evaluvated several steps after all its
ancestors became available., Consequently, the numbering of x can be

modified to 1 + max (E(y): y & a(x)} without violating the precedence
y

121

W U AP Sy

T T - v - -

T

.....

relation., We shall refer in the sequel to this modification as an
elementary shift.

Each execution is a series—parallel combination and consequently has a
well defined input-output map., Elementary shifts replace expressions of the
form e%e®...®p by expressions of the form p*e®...%e (see Figure C-1).

If the physically justifiable idenmtity
pte = e®p (Cc.3)

is added as an axion of the theory of M(Ns (see Appendix D), we conclude
that input-output maps remain invariant under olementary shifts. This leads

to the following result,

Theorem C.1

Every execution E() of a finite MCN can be transformed by a finite

number of elementary shifts into the nnique minimal execution,

Proof:

The minimal execution E() is constructed by the following simple
algorithm (see, o.g., [14]):

(1) Put all the global inputs of the MCN inm §0‘

(i1) PFor A= 0.1*2.... put all the immediate successors of membdbers
of Si in Si+1.

122

b L

3 341 1

()
R

s. Before the Shift

b. After the Shift

Figure C-1, The Rffect of an Elementary Bhift.

B(x) = 1; max {B(y); y s a(x)) = §. T
y k

-

123 | R

Now, if E() 4is a nonminimal execution we transform it into E() by the

following rule:

For i =0,1,2,... shift all members
of §i from E(x) to E(x) = i.
Since the MCN is finite, s finite number of shifts will transform E()
into E(). Notice that each variable is shifted exactly once. Also motice

that by its comstruction, the number) s equal to the lengths of the

shortest path connecting x to some global imput. Hence, ﬁ(x) cannot be

further reduced.

Corollary C.1.1

The minimal execution E() satisfies E(x) £ E(x) for every variable

x and for every execution E().

QO!’O!!I!! Q,L .Z

A finite executable MON has s unique well-defined input-output map.

This i{s so becanse all executions define the same masp, by Theorem C.1.

001_©O eoreoem

Corollary C.1.2 establishes the theorem for finmite NCNs. For infinite
networks it will be sufficient to prove that for every execution E() end
for every variable x the map from globasl imputs to x is unique and does
not depend upon the choice of execution. However, E() induces some
execution on the finjte MCN corresponding to a(x), the finite ancestry of
x. Therefore, the map from inputs to x coincides, for every choice of

BE(), with the unique map dotermined by the minimal execution on a(x).

124

O

-

la}

2

& %

It is interesting to notice that an infinite MCN does mot have, in
genoral, a minimal execution. The construction procedure descridbed im the
proof of Theorem C.1 is still valid, but §‘ are, in general, jipfinite and

do not determine a valid execution.

125

[AN

——e— A

126

o~

-
e -
-
Ay
-

-

-

- ey
.
[—

e e B

APPENDIX D
ARY EQUI S ONS

The general theory of MCNs does not involve any specific assumptions
about the properties of the processor maps {fp}. Consequently, there are
only a few equivalence transformations that are still valid in this general
framework. Most equivalence transformations used with block—-disgrams and
signsl-flow-graphs involve linearity assumptions and do not hold for genmeral
nonlinear maps.

Two basic maps, the identity map e and the split map s can be used
in conjunction with any MCN manipulation. The identity map leaves its inmput

variables unchanged, viz.,
e(x) = x
The split map duplicates input variables, vi:.,
s(x) = (x,x)

It is possible, of course, to have more than two copies of the same
variable, either by introducing a split processor with several outputs, or
by using several two-output split processors.

The propertics of the identity and split processors give rise to
several elementary equivalence transformations (Figure D-1):

(a) The identity commutes with any other processor f.

(b) The cascade of a processor f and its inverse f-l can be
replaced by an identity processor, provided the processor f has
an inverse,

(c) The split processor ‘commutes’ with any processor f,
(d) Any processor f with two outputs can be replaced by a
composition of a split processor and two single output processors

f., f,. The processors f_, f, correspond to the maps from
lgput* to each of the two suthts. respectively.

127

—r

- L‘.‘ Aodit o .

DU DY

-y

"

1
]
4
4
4

D O

i s. Commutativity of the Identity

—>@———>@—->¢=>—>®’"

b. The Inverse Processor

e

¢. Commutativity of the Split

() -]

4. Splitting of Multivariable Outputs O

Figure D-1. Elementary Equivalence Transformations

128 - ‘}

-

APPENDIX E
YSIS O 1 IPLIERS

The multiplication of two matrices involves the computation of innmer
products between every row of one matrix and every column of the other ome,

To emphasize this interpretation we shall consider in the sequel the product
.
C:=AB

so that the inner products are between columns of A and columns of B. In
fact, Cij
and the j—-th column of B. Conseguently, we can compute the product by

feeding the columns of A,B, which we denote by 8, bj' into the NN of

is precisely the inner product between the i-th column of A

Figure E-1. Each input is s column vector which is propagated withont
modification through the network. The a,b inputs of each processor
propagate through without modification and the inner product of the two
input vectors is computed inside the processor. This multichannel
configuration can be further decomposed by observing that the inner products
can be computed recursively, i.e., if ¢ := a®b where a = {ai]. b= (pi}
are column vectors of length N, then ¢ = N where

€y = €4-q t 0By, =0

Thus, every single processor in Figure E-1 is, in fact, a cascade of basic
‘multiply and add’ processors (Figure E-2). When this decomposition is
combined with the uchitectnre.of Figure E-1, we obtain the NN for matrix
multiplication. Figure E-3 displays a side view of this 3-D network whose
top view is shown in Figure E-1, The complete NON comsists of N
horizontal layers such as in Figure E-1 arranged in a vertical stack.
Equivalently, we may say the MON consists of three vertical layers such as
in Figure E-3 arranged behind each other. It is important to notice that

129

ol

el

!

a. The Complete Network

b:ln "‘ 'f
LIS

ain 8out , if?
bout l.“

.
*out in’ bont - bin‘ ¢ = &4n b

- in

b. A Single Processor

Figure E-1. A Basic Matrix Multiplier

130 P

a. L ECIRIE
eI

5
E a, Bl
: a, 82

Cin

B Figure E-2. A Basic Inner Product Array

-y

131 -

!

11
8y
® (] L J o
[] [] ® []
[] [] ® [J
N4
€ Cy2 €43 Ci4

Figure B-3. The M(N of Matrix Nultiplicationm
(side view shows i-~th vertical layer)

132

'L_'

Sl ;

P

-

the direction of the C-paths can be either from top to bottom, as shown in
Figure E-3, or from bottom to top. This is a comnsequence of the

commutativity and associativity of addition, viz.,

N 1
2 ey = 2 aB,

i=1 i=N

This means that there are two distinct MCNs that correspond to matrix
multiplication and they differ only by the direction of the C-paths.

Every architecture for matrix multiplication is equivalent to the MCN
of Figure E-3. The various architectures are obtained by imposing
additiona)l constraints upon the matrices (i.e., bandedness) and resrranging
the resulting reduced NON as a space—time diagram. The corresponding self-
timed bdlock-disgram follows immedistely from this rearrangement.

The matrix multiplier of S.Y. Kung [7] is obtaimed by interpreting the
vertical dimension in Figure E-3 as ’time.’ Since vertical arrows
correspond to local storage, the resulting block-diagram is descridbed in
Figure E-4 (motice the similarity with E-1). The elements of each column
vector 8., bj are fed sequentially into the array and each processor has a

1j

self-loop which computes the inner—-product ¢ i

bj recursively in
time.

The matrix multiplier of S. Reo [10] is designed for a banded B
matrizx. It will be sufficiemt to amalyze it for a single column of A, say
;. The NN of Figure E-3 aov has only one vertical layer, and many
processors in this layer have zero inputs and can be eliminated. The
resulting reduced NCN is shown in Figure E-5a. Dummy processors, showa in
broken line, were added to emphasize the tridiagomal nature of the NON. A
self-timed block-diagram (Figure E-5b) is obtained by considering the
diegonal axis as ‘time.’ It consists of a linear array of identical
processors, one for each nonzero diagomsl of the banded matrix B. The
elements of B are fed into the array by disgomals. The elements of A, C
are handled by columnsg: Every column of A produces a zrow of C and
gequires 8 linear array as in Figure E-5b. It is interesting to notice that

the iaput interval of this matrix multiplier is T + <, where T is the

133

L

b b
41 ®y2 13 34
a —
i1
842
843
8. Self-Time Block-Diagram
bin
ain aout
C
bout
%out = *in’ bont = bin' cnev = cttorod + S4n b!n

b, Single Processor

Figure E-4. The Matrix Nultiplier of S8.Y. Kung

—
w
-
' o
o
o

................

a. Reduced NON

b b b

k, k-1 k,k k,k+l

ik

b, Belf-Timed Blook-Diagram

Figure B-S. The NMatrix Multiplier of 8. X. Reo

Ly v]'vvw.
APERT - L.
S r-e v,

1
4

135

e e
. A Y
PP aoaa’a a4

]
]

A A — e e dencdsandi PSR -

time required to compute ¢’ and t. is the time required to propagate
‘a’ through one processor When the direction of the C-path or,
equivalently, of the A-path, is reversed the input interval becomes

Te T Tar Since T, <« Te the two networks di;fer only slightly in their
throughput, However, we shall presently encounter another example where the
reversal of the C—-path results in a large increase in throughput.

The matrix multiplier of H.T. Kung is designed for banded A, B
matrices. This means that the active processors in the mon—-reduced MCN of
Figures E~1 and E-3 are located within a parallelepiped sligned with one of
the main diagonals of the rectangular prism representing the non-reduced
MCN. A simple illustration of the reduced MCN is obtained by comsidering
two adjacent horizontal layers (Figure E-6). VWhen we slide the horizontal
layers so that they overlap, the resulting network corresponds to H.T.
Kung’'s multiplier (Figure E~7). This network clearly has an input interval
of T + Zr‘. Bowever, if we reverse the C-path we obtain the configuration
of Weiser and Davis [4] (Figure E-8) which has an input interval of
Itc -~ 2t‘|. The difference between the two multipliers is significant when
they are implemented by single rate systolic arrays. In this case
T, =T~ T 80 that the former network has an input interval of 3t while

c
the latter has an input interval of <!

136

T T

ad

——

; layer i (:::) (:::)
-layer i+l O

a. Side View

b. Top View

Figure E-6. The Reduced NCN for Banded Matrix Nultiplication . !' h

137 | —

P

layer 1

layer i+l

-

O O ,
/@O

a. Side View

Figure E-17.

b. Top View

The Matrixz Multiplier of H.T. Kung

138

|
[T

17
-¥
A

la -

[—
S L
L ~

T .

J -——

- Jayer 1 O O rd O/ O/

a. Side View

b. Top View
L' Figure E-8. The MNatrix Multiplier of Weiser and Davis
. L 139)

]1‘4.!1114 J‘AJullJ‘ilqu — T md_ ~ vy T - .4_, - B M M qqqqq ,- « ¥ - Y ; | _ ~
i ') D I} LR { ' [
L |

140

v -

————y

APPENDIX F
EQUIVALENCE VIA LINEAR TRANSFORMATIONS

Two dependence matrices, say, Dl' Dz.
there exists a nonsingular linear transformation T and a permutation

matrix P such that

Dz = PDIT (F.1)
This relation is clearly reflexive (with P= I, T =]I), symmetric and
transitive, so 'equivalence’ is indeed an equivalence-type relation.

Denoting the length of dependence vectors by n, and the number of

dependence vectors by p, we conclude that every dependence matrix with
p {n and full (row) rank is equivalent to

P .- t, ol (F.2)
which will be defined as the canonical equivalent of such dependence
matrices. When p > n, and the dependence matrix has full (column) rank,

we can always find s permutation matrix P so that

I
PD = T (F.3)
X

are considered equivalent when

where T consists of the first =n rows of the permuted matrix PD. Thus,
the canonical equivalent of dependence matrices with p > n is of the form
(F.3) and the properties of D can be studied by examining the structure of
the smaller matrixz X.

However, since the submatrix X in (F.3) is not unique, it is required
first to find all possible camonical equivalents to a given dependence
satriz D. This can be done by applying all possible p! permutations P
to the rows of D and then computing X via (F.3). However, not all

141

. i) -'~‘(l ll...ll.l.l l.l l' ll<l v I P - v A Y

In summary, once all possible camomical equivalents of a given D have
been computed it is relatively easy to test whether some other dependence
matrix D is equivalent to D. One only needs to compute a single
canonical equivalent of D and compare it to the collection of canomical

equivalents of D: a match indicates that ﬁ is indeed equivaleat to D.

142

PR RO DU W NNy Wy Sou PSS S S B e N~ IS

B4 ‘
-0

L Tet
S
.

Te B
-—

S let Tl
CR

I

END |

FILMED

10-84

DTIC

